By John Harvith

The program of Black History Month observations that the University of Pittsburgh inaugurated in 2004 has now been established as the University of Pittsburgh K. Leroy Irvis Black History Month Program to honor the memory of the legendary Pennsylvania legislative leader, Pittsburgh alumnus, and emeritus trustee. Irvis, who in 1977 became the first African American speaker of any state house since Reconstruction, sponsored in 1966 the bill that made Pitt a state-related institution of higher education.

Pitt established a number of ongoing opportunities to honor Irvis, among them the K. Leroy Irvis Reading Room—dedicated at a standing-room-only ceremony on Dec. 6, 2001—which houses his personal archive; and the production of a 2004 video documentary on his life and work, K. Leroy Irvis: The Lion of Pennsylvania, narrated by Julian Bond, issued on DVD, and broadcast both locally on WQED and statewide on public television. Pitt also presented Irvis with the School of Law Distinguished Alumni Award in 2004.

This establishment of the Irvis Black History Month Program is not only the latest recognition by the University of the historic significance of K. Leroy Irvis’ many contributions to Pitt, Pittsburgh, the Commonwealth of Pennsylvania, higher education, and the cause of human rights, but also a decision to bring his name to the forefront of our Black History Month observances, keeping it before current and future generations of Pennsylvanians,” said Pitt Chancellor Mark A. Nordenberg.

“I take great personal satisfaction in having been touched by the greatness of K. Leroy Irvis through my many interactions with him in his role as a Pitt trustee, 1954 alumnus of the Pitt law school, dynamic legislator, neighbor, mentor, and friend. I also am grateful for the many opportunities for community partnering that our Black History Month celebrations have presented since 2004. I look forward to continuing those partnerships as Pitt’s Black History Month Program moves forward under the name of Speaker Irvis—and all that he stood for,” Nordenberg added.

This new University of Pittsburgh initiative, which serves as a tribute to K. Leroy Irvis’ beliefs and a celebration of his life, has brought joy to my heart,” said Cathryn L. Edwards Irvis, Speaker Irvis’ daughter. “I take great personal satisfaction in offering superb patient care.”

Schools are ranked according to the size of the student body. Small schools are those with fewer than 5,000 undergraduates; medium-size schools have between 5,001 and 15,000 undergraduates; and large schools are those with more than 15,000 undergraduates.

Although it is not a requirement for service, the majority of individuals who have volunteered in the Peace Corps since its founding in 1961 have been college graduates. Currently, 95 percent of the volunteers serving the 27-month commitment have at least an undergraduate degree.

The Peace Corps is celebrating a 46-year legacy of service at home and abroad. It has more than 8,000 volunteers overseas. To view the entire Peace Corps Top Colleges 2008 list, visit www.peacecorps.gov/news/resources/stats/pdf/schools2008.pdf.

By Sharon S. Blake

The University of Pittsburgh moved up two places on the Peace Corps’ annual list of large schools nationwide producing Peace Corps volunteers. Pitt has 54 alumni currently serving as volunteers, making it number 13 among large universities across the country. It also ranked first among large schools in Pennsylvania, for the second straight year. Since the Peace Corps’ inception, 564 Pitt alumni have joined its ranks.

Pitt placed ahead of such other institutions of higher learning as the University of Illinois at Urbana-Champaign, Indiana University, and the University of California at Los Angeles in this category.

In the Peace Corps ranking of graduate schools, Pitt was ranked number 10 for the second straight year, with 11 alumni with advanced degrees currently serving as volunteers.

“The Peace Corps provides a unique opportunity for graduates to use their education and skills, and apply them in the real world,” said Peace Corps Director Ron Tschetter. “There are 1,092 institutions of higher learning represented by volunteers serving in 74 countries overseas,” he added, “and these volunteers can be proud of the contributions they are making in the lives of others.”

Schools are ranked according to the size of the student body. Small schools are those with fewer than 5,000 undergraduates; medium-size schools have between 5,001 and 15,000 undergraduates; and large schools are those with more than 15,000 undergraduates.

Although it is not a requirement for service, the majority of individuals who have volunteered in the Peace Corps since its founding in 1961 have been college graduates. Currently, 95 percent of the volunteers serving the 27-month commitment have at least an undergraduate degree.

The Peace Corps is celebrating a 46-year legacy of service at home and abroad. It has more than 8,000 volunteers overseas. To view the entire Peace Corps Top Colleges 2008 list, visit www.peacecorps.gov/news/resources/stats/pdf/schools2008.pdf.

Pitt’s Black History Month Program Named for K. Leroy Irvis

By Michele D. Baum

In an era when the federal budget for biomedical research is failing to keep up with inflation, the University of Pittsburgh has improved its ranking to sixth in the nation among academic institutions and their affiliates in funding from the National Institutes of Health (NIH), a universally recognized benchmark of research excellence.

Newly released data for fiscal year 2006 show that Pitt received $447 million in NIH research support. In addition, Pitt ranks fourth nationally in the number of individual grants received.

“Research is the major area of institutional activity that most clearly distinguishes our mission from that of most other institutions of higher learning,” said Pitt Chancellor Mark A. Nordenberg. “Our University’s consistently high ranking among the top recipients of competitively awarded NIH funds is clear evidence of the pioneering research being completed by our faculty, and we are extremely proud of this record.”

“NIH ranking is the only objective metric that we have in a nationally competitive, peer-reviewed context,” said Arthur S. Levine, senior vice chancellor for health sciences and dean of Pitt’s School of Medicine. “While it is very difficult to measure the quality of education or the true quality of patient care, such a ranking means that we are well positioned to attract high-quality students and residents, excellent faculty, and to offer superb patient care.”

The upward shift in ranking occurs at a time when NIH budgets have flattened, following a period of steady growth. “In 2006, NIH experienced its first budget cut since 1970, resulting in a 13 percent loss of research purchasing power since 2003, while grant applications have doubled since 1998,” Levine noted.

The University of Pittsburgh’s ranking encompasses 1,082 individual grants to faculty members for a total of more than $447 million. Pitt is one of more than 3,000 faculty members for a total of more than $447 million. Pitt is one of more than 3,000

From: Pitt Chronicle Volume IX Number 3 January 22, 2008
Pitt-led Research Team Creates Process With Potential For Better Development, Testing of Cystic Fibrosis Drugs

By Morgan Kelly

A team led by researchers from the University of Pittsburgh developed a process that, for the first time, allows the individual stages of the protein deterioration that leads to cystic fibrosis (CF) to be observed, and possibly interrupted. Although it needs further refinement, the technique could be instrumental in developing pharmaceutical treatments for CF and for testing recently developed drugs that may ultimately be used to treat the disease.

The researchers—led by Jeffrey Brodsky, professor and Avinoff Chair in Pitt’s Department of Biological Sciences in the School of Arts and Sciences—describe the process in the current edition of the journal Cell. Brodsky and Pitt research associate Kuniaki Nakatani worked with John Hopkins University professor Susan Michaelis and research associate Gregory Huyer.

The team focused on the protein created by the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Normally, this protein acts as an ion channel on the outer membrane of cells—regulating the lungs, pancreas, and intestines—and regulates the balance of chloride in and out of the cell. With CF, a mutation blocks the ability of this protein to be transported to the cell membrane. As a result, the levels of chloride, other salts, and water inside and outside the cell become unbalanced. This ultimately manifests as the thick mucus, pancreatic malfunction, and breathing difficulty commonly found with CF.

Normally, even healthy CFTR proteins can degrade quickly, so the process has been difficult to replicate in the laboratory using human cells. Brodsky said. Therefore, he and his team first genetically engineered yeast cells to produce the CFTR protein. (They reported on this accomplishment in 2001.)

Once this system was established, the team generated cell membranes already containing CFTR proteins and recombined them in a test tube. Brodsky and his colleagues then monitored how the CFTR protein was selected and then “tagged” by the short protein ubiquitin prior to being degraded. Ubiquitin’s primary function is to mark other proteins for destruction.

“Until now it was difficult to define individual steps during the destruction of CFTR or other similar disease-causing proteins,” Brodsky said. “We hope that this system will open up new methods to identify drugs that will block the degradation of this protein and help treat the disease.”

The team also repeated the process for two other defective proteins in the test tube, suggesting that the newly developed system will be widely applicable. They have reproduced yeast systems for proteins that lead to ailments such as Alzheimer’s disease and alpha-1-antitrypsin deficiency, a condition marked by defective lung and, sometimes, liver function. The team will next attempt to control the degradation of these proteins using the process for CFTR proteins, Brodsky said.

To read the complete paper, visit the Cell Web site at www.cell.com/content/article/ab...
Doctoral Students Without Borders

To train scientists of the future, Pitt rethinks what a graduate program in the life sciences should be

This is the second in a series about the University of Pittsburgh’s programs in graduate and professional education.

“...mainly by rethinking the very notion of what graduate studies can be. It has established new graduate programs that are based upon collaborations among schools within the University, including the schools of medicine, arts and sciences, and engineering.

“We’ve consciously tried to develop this approach,” explains Provost James V. Maher. “Creating these programs has gone hand in hand with strides in biological and biomedical research at Pitt. The old distinctions between disciplines are increasingly becoming obsolete.

Scientists need to be able to think across traditional boundaries to solve the big questions. We find it is these PhD programs we are creating—and the students themselves—that are breaking down walls, unifying both the research and graduate study across this campus and beyond.”

This wave of innovation began in the 1990s, with the creation of programs in neuroscience and bioengineering. More recently, we developed PhD programs in computational biology, molecular biophysics and structural biology, and integrative molecular biology to capture trends in emerging fields. “Many of these fields simply didn’t exist a generation ago,” says Maher. “We created these programs to stay ahead of the curve in training the professors and researchers who will shape the next generation of science. We’re training people to address the questions of the future even though we often don’t know what those questions will be.”

—James V. Maher

By Reid R. Frazier

In the past generation or so, scientists have been rethinking how they study human biology. Today’s powerful imaging helps them see how a cell’s tiniest particles behave. The untangling of the human genome allows them to trace precisely how human bodies are built, or impacted by disease. Scientists borrow techniques from disparate disciplines to sort through the big questions of biology: Why do cancer cells behave the way they do? How does the brain work? Can we rebuild dead tissue? They use molecular biophysics, pharmacology, and cognitive psychology to study mental illness; they use mathematics, computer science, and chemistry to study cancer.

Clearly, this is a brave new world. It’s also a challenging landscape to train the next generation of researchers in the biomedical and biological sciences. After all, the disciplines may look entirely different in 20 years. But the University of Pittsburgh has emerged as a leader in training young scientists in this new terrain—mainly by rethinking the very notion of what graduate studies can be. It has established new graduate programs that are based upon collaborations among schools within the University, including the schools of medicine, arts and sciences, and engineering.

“We’ve consciously tried to develop this approach,” explains Provost James V. Maher. “Creating these programs has gone hand in hand with strides in biological and biomedical research at Pitt. The old distinctions between disciplines are increasingly becoming obsolete. Scientists need to be able to think across traditional boundaries to solve the big questions. We find it is these PhD programs we are creating—and the students themselves—that are breaking down walls, unifying both the research and graduate study across this campus and beyond.”

This wave of innovation began in the 1990s, with the creation of programs in neuroscience and bioengineering. More recently, we developed PhD programs in computational biology, molecular biophysics and structural biology, and integrative molecular biology to capture trends in emerging fields. “Many of these fields simply didn’t exist a generation ago,” says Maher. “We created these programs to stay ahead of the curve in training the professors and researchers who will shape the next generation of science. We’re training people to address the questions of the future even though we often don’t know what those questions will be.”

—James V. Maher

By Reid R. Frazier

In the past generation or so, scientists have been rethinking how they study human biology. Today’s powerful imaging helps them see how a cell’s tiniest particles behave. The untangling of the human genome allows them to trace precisely how human bodies are built, or impacted by disease. Scientists borrow techniques from disparate disciplines to sort through the big questions of biology: Why do cancer cells behave the way they do? How does the brain work? Can we rebuild dead tissue? They use molecular biophysics, pharmacology, and cognitive psychology to study mental illness; they use mathematics, computer science, and chemistry to study cancer.

Clearly, this is a brave new world. It’s also a challenging landscape to train the next generation of researchers in the biomedical and biological sciences. After all, the disciplines may look entirely different in 20 years. But the University of Pittsburgh has emerged as a leader in training young scientists in this new terrain—mainly by rethinking the very notion of what graduate studies can be. It has established new graduate programs that are based upon collaborations among schools within the University, including the schools of medicine, arts and sciences, and engineering.

“We’ve consciously tried to develop this approach,” explains Provost James V. Maher. “Creating these programs has gone hand in hand with strides in biological and biomedical research at Pitt. The old distinctions between disciplines are increasingly becoming obsolete. Scientists need to be able to think across traditional boundaries to solve the big questions. We find it is these PhD programs we are creating—and the students themselves—that are breaking down walls, unifying both the research and graduate study across this campus and beyond.”

This wave of innovation began in the 1990s, with the creation of programs in neuroscience and bioengineering. More recently, we developed PhD programs in computational biology, molecular biophysics and structural biology, and integrative molecular biology to capture trends in emerging fields. “Many of these fields simply didn’t exist a generation ago,” says Maher. “We created these programs to stay ahead of the curve in training the professors and researchers who will shape the next generation of science. We’re training people to address the questions of the future even though we often don’t know what those questions will be.”

—James V. Maher

By Reid R. Frazier

In the past generation or so, scientists have been rethinking how they study human biology. Today’s powerful imaging helps them see how a cell’s tiniest particles behave. The untangling of the human genome allows them to trace precisely how human bodies are built, or impacted by disease. Scientists borrow techniques from disparate disciplines to sort through the big questions of biology: Why do cancer cells behave the way they do? How does the brain work? Can we rebuild dead tissue? They use molecular biophysics, pharmacology, and cognitive psychology to study mental illness; they use mathematics, computer science, and chemistry to study cancer.

Clearly, this is a brave new world. It’s also a challenging landscape to train the next generation of researchers in the biomedical and biological sciences. After all, the disciplines may look entirely different in 20 years. But the University of Pittsburgh has emerged as a leader in training young scientists in this new terrain—mainly by rethinking the very notion of what graduate studies can be. It has established new graduate programs that are based upon collaborations among schools within the University, including the schools of medicine, arts and sciences, and engineering.

“We’ve consciously tried to develop this approach,” explains Provost James V. Maher. “Creating these programs has gone hand in hand with strides in biological and biomedical research at Pitt. The old distinctions between disciplines are increasingly becoming obsolete. Scientists need to be able to think across traditional boundaries to solve the big questions. We find it is these PhD programs we are creating—and the students themselves—that are breaking down walls, unifying both the research and graduate study across this campus and beyond.”

This wave of innovation began in the 1990s, with the creation of programs in neuroscience and bioengineering. More recently, we developed PhD programs in computational biology, molecular biophysics and structural biology, and integrative molecular biology to capture trends in emerging fields. “Many of these fields simply didn’t exist a generation ago,” says Maher. “We created these programs to stay ahead of the curve in training the professors and researchers who will shape the next generation of science. We’re training people to address the questions of the future even though we often don’t know what those questions will be.”

—James V. Maher

By Reid R. Frazier
Scientists believe that learning more about how the brain functions is key to understanding why certain behaviors occur. Sometimes, the body's response to stimuli can be blocked by substances that prevent electrical signals from passing through the brain's membranes. Glutamate, a neurotransmitter, plays a role in this process. When activated by a specific amino acid, the glutamate receptor can open a pore in the membrane through which electrical signals can flow.

Siegler Retchless is conducting research on a protein that acts as a target for glutamate. This protein is called a neurotransmitter receptor, and it can be found in the brain's membranes. When glutamate binds to the protein, it opens a pore in the membrane through which electrical signals can flow. However, sometimes the pore is blocked by specific amino acids, and the glutamate receptor is not able to function properly.

The degree of collaboration here means we have this tremendous resource that just isn't available in other places," says Alan Sved, CUNP codirector, professor of neuroscience, and chair of that department, says the program is designed to give students a broad range of experiences and skills as they begin their scientific careers. "We're not simply a collection of outstanding neuroscientists. We're an interactive group of outstanding neuroscientists. Students aren't simply working with one primary investigator locked away in a lab somewhere."

It wasn't always this way. For years, Pitt neuroscientists were scattered around the campus—some in neuroscience within the School of Arts and Sciences, some in neurobiology, molecular genetics and biochemistry, and psychology. "The idea was that instead of running two separate programs under the CUNP banner—bringing together psychologists, cell biologists, pathologists, and others for research and graduate training. "The idea was that instead of running two PhD programs that would be different, but look similar and confuse everybody, we should combine the resources into a single PhD program clearly focused on neuroscience."

So Pitt united these programs under the CUNP banner—which includes psychology, cell biology, and others for research and graduate training. "The idea was that instead of running two PhD programs that would be different, but look similar and confuse everybody, we should combine the resources into a single PhD program clearly focused on neuroscience."

Cooper says. Creating the CUNP graduate training program gave Pitt one of the top-ranked neuroscience programs in the country.Incoming students' average GRE and GPA scores are well above the national average for other neuroscience programs. Most of the students are drawn by their intense interest in research. They have the opportunity to work in a number of CNUP-affiliated research groups—such as those focused on aging, Alzheimer's disease, Parkinson's disease, schizophrenia, and pain. But the integration didn't just happen. The University worked hard to break down traditional barriers between disciplines, Sved says. For instance, there was a learning curve before students in Arts and Sciences and the medical school faculty became accustomed to working with one another—and vice versa.

"It was a major divide," Sved says. "It was a barrier to doing things. Now, we don't even see it. It is transparent to the students. We have students who on any given day couldn't tell whether they were working with Pat Carol, (professor in Arts and Sciences' neuroscience department) or Bill Yates (professor in the School of Medicine's otolaryngology department). In fact, they're working with both of them."

David Moorman, who received his PhD in neuroscience in 2005, did his doctoral research at the CUNP and the Center for the Neural Basis of Cognition, a joint Pitt-Carnegie Mellon University initiative. He worked with neuroscientists, computer scientists, and psychologists to study the way the brain processes certain kinds of spatial information. Each faculty member brought different skills and strategies from their discipline, their own particular "toolkit."

"Part of it just has to do with knowing what techniques are available to you," says Moorman, now a postdoctoral neuroscience fellow at the Medical University of South Carolina. "The big problems are going to be solved by bringing together different disciplines, but you're going to have to work with people in different fields. That's how the big problems get solved," Moorman adds.

"Siegler Retchless majored in neuroscience as an undergraduate at Brown University. When choosing a graduate school, her advisor cited Pitt as one of the top neuroscience programs in the country. "We have people from all over the University—and the University is huge. All these people work on different aspects of brain function—everything from MRI studies where they can look at what areas of the brain are active during a learning task, to figuring out how molecules work, and everthing in between."

"The important thing we do here is create a mindset of problem-solving, rather than a specific technique that you master. We can train students for what they do now, but they're not going to be doing what they do now forever."

-Susan Amara
has a long history of training students to use multiple disciplines to tackle complex medical and biological problems. The department celebrated its 10th anniversary last fall, but its roots go deeper. Pitt bioengineers were instrumental in UPMC’s groundbreaking artificial heart program, which implanted its first artificial heart device in 1985, and discharged the first patient on a ventricular-assist device five years later.

Today, Pitt’s bioengineering program is among the best in the country, ranked in the top 10 by such publications as U.S. News & World Report. “Our students come from everywhere, they’re interested in everything,” says Harvey S. Borovetz, chair of the Department of Bioengineering and Robert L. Hardesty Professor of Surgery. “Every year they become more and more diverse.”

Though their degrees are granted by the Swanson School of Engineering, graduate students conduct research in labs at the School of Medicine, the McGowan Institute for Regenerative Medicine, the University of Pittsburgh Cancer Institute, the School of Dental Medicine, the Graduate School of Public Health, and the School of Health and Rehabilitation Sciences, in addition to laboratories within the Swanson School. This open access to broad swaths of campus expertise, Borovetz says, “is not part of the reason for our success. It is the reason. It’s what other places would love to be able to claim.”

From his office in Benedum Hall, Borovetz has a view of the medical school and UPMC’s training hospitals perched atop “Cardiac Hill.” It is a reassuring sight for Borovetz, who spent two decades in Pitt’s artificial heart program, along with cardiac transplant surgeons and cardiovascular physicians at UPMC and the School of Medicine. The bioengineering program’s success stems in large part from its access to clinical settings, lab space, and faculty talent provided through its unique partnership with the medical school. “We are totally integrated with the School of Medicine,” says Borovetz. “That gives our students opportunities that are, quite frankly, limitless in terms of what they want to do.”

Rebecca Long, a fifth-year PhD student, uses the science of mechanical engineering and physiology to conduct basic research into tissue engineering science. With biomechanics, Long says, “you’re taking principles you learn in mechanical engineering or basic physics and seeing how to apply them to things that don’t behave like a steel beam. It’s taking those same concepts and using them to learn how the body works.”

Long, who majored in chemical engineering and biomedical engineering at Carnegie Mellon as an undergrad, was drawn to Pitt’s program by the opportunity to work with Michael S. Sacks, William Kepler Whiteford Professor of Bioengineering. In 2006, Sacks shared a Scientific American 50 award with William R. Wagner, deputy director of the McGowan Institute and a professor of surgery, bioengineering, and chemical engineering. The award recognized their pioneering research into tissue engineering.

For her PhD dissertation, Long is studying the biomechanics of bladder cells. Sacks, Wagner, and their McGowan Institute colleagues are working to engineer soft tissue that could eventually replace defective tissues, such as heart valves. Long’s research on cell behavior in the bladder—an organ which frequently atrophies following a spinal cord injury, could lead to drugs to prevent urinary tract problems in spinal patients.

Pitt’s bioengineering program prepared Tim Maul (ENGR ’07) well for the interdisciplinary environment of biomedical research. A postdoctoral fellow in Wagner’s lab at the McGowan Institute, Maul is working to design injectable polymer- and lipid-based microbubbles that will seek out inflamed blood vessels. His current lab includes a biophysicist, a biochemist, a physician, and a chemical engineer. “The bioengineering program is the ideal incubator for learning how to grow in this kind of environment,” he says. “Working in these highly interdisciplinary teams is the key to having big successes in research.”

For his doctoral research, Maul studied the mechanics of stem cells—how they reacted to conditions similar to those inside a blood vessel. His work touched several different disciplines—mechanical engineering, cellular and molecular biology, and statistics. He worked with chemical and molecular biologists, and experts in tissue engineering. “A lot of times, people who study biology and mechanical engineering or chemical engineering have a hard time communicating because they don’t speak the same language. But I learned in my labs how to learn from people around me.”

Students coming out of the program enter a field bursting with opportunities in private industry, academia, and government-funded research institutions. Borovetz is convinced that Pitt is training the next generation of leaders in fields such as tissue engineering, imaging technology, and prosthetics.

“I don’t know how or when, but I know that this is going to be the place where you’re going to see these kinds of discoveries being made. That’s what’s so great about having our students participate in this research. Turn them loose and they’re going to bioengineer great solutions down the road,” Borovetz says.

Re-envisioning the PhD
The Carnegie Initiative on the Doctorate

The importance of doctoral education to the future of the United States cannot be overestimated, according to the Carnegie Foundation for the Advancement of Teaching, an independent policy and research center. In particular, the foundation cites the crucial role that PhD holders play in educating undergraduates and future scholars, creating new knowledge, developing life-saving medical interventions, and shaping social programs and policies.

The University of Pittsburgh is helping to shape how graduate training is done nationally. Pitt’s prominence in this area was a factor in its being invited to participate in the foundation’s Carnegie Initiative on the Doctorate, a multiyear research and action project aimed at improving doctoral education at American universities.

Initiative leaders decided to examine the best practices in graduate programs to determine changes on a national level. Five units from the University were chosen to participate in the study—more than from any other university.

Recognized as being “stewards of their discipline” were Pitt’s departments of chemistry, history, English, and mathematics, and the Center for Neuroscience, all of which provided cutting-edge programs as models.

One of the Carnegie Initiative outcomes identified the “need to create an intellectual community as one of the key approaches to change in doctoral education.” Clearly, the rich intellectual community offered through such a multidisciplinary, multischool experience like neuroscience is helping to re-envision the doctorate of the future.
Continued from Page 1

Pitt Panthers Basketball

The Pitt Panthers basketball team continues to rack up victories despite injuries that have sidelined several players. After a disappointing conference opener against Villanova on Jan. 6, the Panthers struck back with three consecutive Big East victories, including an 84-70 win against Seton Hall on Jan. 12 and a 69-60 win over Georgetown on Jan. 14. The Georgetown game packed Petersen Events Center (top) and featured fast work by the Panthers, including Tyrell Biggs (above). Pitt comes into the second half of the season with a 16-5 record and a 5-1 Big East mark.

The inaugural K. Leroy Irvis Black History Month Program event will be the world premiere screening on Feb. 1 of the WQED-produced TV documentary Fly Boys: Western Pennsylvania’s Tuskegee Airmen, which includes several Tuskegee airmen who are Pitt alumni.

Irvis' political career began in 1958, when he was elected to the Pennsylvania House of Representatives. He served 15 consecutive terms and sponsored more than 1,600 pieces of legislation, including the bills enacting into law in 1966 that created the Pennsylvania Human Relations Commission, which includes several Tuskegee airmen who are Pitt alumni.

Irvis died in Pittsburgh on March 16, 2006, at age 89. Founded in 1787, the University of Pittsburgh can look back on a proud tradition of service to the Black community dating back to the 1820s, when Chancellor Robert Bruce tutored a young lad from Pittsburgh’s Hill District. The University’s first Black graduate was William Hunter Dammond, who, in 1895, earned a degree in civil engineering with honors. Pitt’s modern tradition of Black History Month celebrations, which began with the production and 2004 world premiere screening of K. Leroy Irvis: The Lion of Pennsylvania, continued in 2006 with the production of an award-winning exhibition at the Heinz Regional History Center and accompanying book celebrating the 150th anniversary of the area social organization Three Rivers Youth; the 2006 world premiere screening of the WQED documentary Torchbearers, for which Pitt was the major sponsor, on the contributions of Pittsburgh civil rights pioneers, many with a Pitt connection; and the 2007 world premiere screening of a video documentary on the Hill District-based Freedom House Ambulance Service, whose Black drivers were trained under CPR pioneer and Pitt School of Medicine visionary Peter Safar.

The inaugural K. Leroy Irvis Black History Month Program event will be the world premiere screening on Feb. 1 of the WQED-produced TV documentary Fly Boys: Western Pennsylvania’s Tuskegee Airmen, which includes several Tuskegee airmen who are Pitt alumni.
January 22, 2008 • University of Pittsburgh • 7

Happenings

By Ernest McCarthy
Directed by Herb Neumeyer
January 24–February 9, 2008

Pittsburgh Center for the Arts Gallery, Poppies & Heroines, through January 27

University of Pittsburgh • Alumni Mall • 4277 Fifth Avenue (Between Tenth and Sweeney Alleys) • 412-622-7288 • www.kuntu.org

Concerts

Exhibitions

Andy Warhol Museum, Ron Mueck, through March 30; Canaletto Major: Andy Warhol’s Cats and Dogs (and Other Parody, Ani-

Olympic Exhibition and Tea House, 3:30 p.m. Jan. 28, William Pitt Union Ballroom, part of Chinese Culture Exhibition Month, Pitt Chinese Students and Scholars Association, 412-648-9523.

Olympic Exhibition and Tea House, 3:30 p.m. Jan. 28, William Pitt Union Ballroom, part of Chinese Culture Exhibition Month, Pitt Chinese Students and Scholars Association, 412-648-9523.

Olympic Exhibition and Tea House, 3:30 p.m. Jan. 28, William Pitt Union Ballroom, part of Chinese Culture Exhibition Month, Pitt Chinese Students and Scholars Association, 412-648-9523.

Olympic Exhibition and Tea House, 3:30 p.m. Jan. 28, William Pitt Union Ballroom, part of Chinese Culture Exhibition Month, Pitt Chinese Students and Scholars Association, 412-648-9523.

Olympic Exhibition and Tea House, 3:30 p.m. Jan. 28, William Pitt Union Ballroom, part of Chinese Culture Exhibition Month, Pitt Chinese Students and Scholars Association, 412-648-9523.

Olympic Exhibition and Tea House, 3:30 p.m. Jan. 28, William Pitt Union Ballroom, part of Chinese Culture Exhibition Month, Pitt Chinese Students and Scholars Association, 412-648-9523.
By Sharon S. Blake

A report released today by the University of Pittsburgh School of Social Work (SSW) says Allegheny County human service agencies do not have the resources necessary to handle what could be a spike in social problems among people in this region as a result of the new Majestic Star Casino, slated to open in May 2009.

The report, Raising the Stakes: Assessing Allegheny County’s Human Service Response Capacity to the Social Impact of Gambling, surveyed 137 agencies that dealt with addiction-related issues, including mental health, drug and alcohol, and faith-based organizations. The goal was to see if they offered or were preparing to offer gambling prevention, intervention, and treatment services. Previous studies have linked gambling to mental health disorders, drug or alcohol abuse, harmful family arguments, poor health, job loss, bankruptcy, arrests, and other issues. The report provides a reliable “snapshot” about the preparedness of local agencies.

“We got into this study because most of the public and media discussion were focused on the economic benefits of the new casino and issues such as traffic and parking garages. We felt it was important to examine the potential strain that gambling would bring to human service providers.”

—Rafael Engel

The report’s findings suggest:

• More than 75 percent of the agencies do not screen for or treat problem gambling, nor have they provided such training for staff;
• Most agencies feel problem gambling is not an issue for their organization; and
• Fewer than one-third of the agencies are familiar with any state or other public awareness campaign to promote issues related to problem gambling, and fewer than 10 percent educate clients on problem gambling.