Pitt Chronicle

Volume IX • Number 26 • September 29, 2008

INSIDE
Heinz grant funds healthy communities............... 2
Chancellor’s annual report to Pitt board.............. 3

Pitt Cardiologist Barry London Receives NIH Pioneer Award

Barry London, the Harry S. Tack Professor of Medicine and chief of the Division of Cardiology in Pitt’s School of Medicine, was named one of 16 NIH (National Institutes of Health) Director’s Pioneer Award recipients at the 2008 Pioneer Award Symposium on NIH’s Bethesda, Md., campus.

London is the first Pitt faculty member to receive the distinction.

The award gives London, who also directs the UPMC Cardiovascular Institute, $2.5 million in direct costs from NIH to conduct novel experiments at the NIH to conduct high-impact, innovative work,” she added. If successful, the research will then be applied to humans.

London plans to conduct with his well-deserved Pioneer Award, not only exemplifies the kind of great science we value so much here at the University of Pittsburgh but also, in this case, holds tremendous promise for clinical advances,” said Arthur S. Levine, senior vice chancellor for the health sciences and dean of the School of Medicine. “Developing novel and innovative tools to study arrhythmias and better identify those patients who are at risk of unforeseen cardiac death holds the potential to save countless lives.”

Arrhythmias are a major cause of morbidity and mortality, with more than 250,000 people dying from sudden death each year in the United States. If successful, both techniques will increase understanding of arrhythmias, improve better identification of patients at risk for sudden death, and guide therapeutic interventions. Thus, identifying novel tools to study arrhythmias in vivo and strastly arrhythmic risk would represent a major advance in cardiovascular care.

Highly creative biomedical research, such as London plans to conduct with his well-deserved Pioneer Award, not only exemplifies the kind of great science that we value so much here at the University of Pittsburgh but also, in this case, holds tremendous promise for clinical advances,” said Arthur S. Levine, senior vice chancellor for the health sciences and dean of the School of Medicine. “Developing novel and innovative tools to study arrhythmias and better identify those patients who are at risk of unforeseen cardiac death holds the potential to save countless lives.”

Arrhythmias are a major cause of morbidity and mortality, with more than 250,000 people dying from sudden death each year in the United States. If successful, both techniques will increase understanding of arrhythmias, improve better identification of patients at risk for sudden death, and guide therapeutic interventions. Thus, identifying novel tools to study arrhythmias in vivo and stratify arrhythmic risk would represent a major advance in cardiovascular care.

University of Pittsburgh scientists are uncovering more evidence that a virus they recently discovered is the cause of Merkel cell carcinoma, an aggressive and deadly form of skin cancer.

The findings, published in a recent edition of the Proceedings of the National Academy of Sciences, put to rest the possibility that Merkel cell polyomavirus, or MCV, infects tumors that already have formed. If that were the case, the virus would be a passenger rather than the driver of the disease.

Experiments in human tumor reveal that the cancer develops in two steps: During infection, MCV integrates into host cell DNA and produces viral proteins that promote cancer formation. Tumors occur when a mutation removes part of a viral protein needed for the virus to reproduce and infect other healthy cells, explained senior investigator Patrick Moore, professor of microbiology and molecular genetics in Pitt’s School of Medicine and director of the Molecular Virology Program at the University of Pittsburgh Cancer Institute. The virus then can spread only as the cancer cells themselves multiply.

Clearly, “MCV infects normal cells before they turn into cancer cells,” Moore said. “The virus could not have infected a tumor afterwards, because it can no longer replicate. It looks very much like MCV is the culprit that causes the disease.”

The researchers propose two possible reasons why these mutations develop: If viral replication continues, the immune system can recognize the intruder to eliminate diseased cells, or the viral replication itself will lead to the death of the cancer cells. Both of these possibilities provide promising leads to find better ways to kill Merkel cell cancer cells without harming healthy tissues.

Also, “this research shows evolution within tumors on a molecular level,” Moore said. “You can see the specific molecular steps.”

The team’s current work could account for many known risk factors for Merkel cell carcinoma as UV exposure and ionizing radiation, which damage DNA and can lead to the viral mutations.

Merkel cell cancers are rare, occurring in about 1,500 Americans annually. Half of patients who have advanced disease die within two years of diagnosis, and two-thirds of them die within two years. The elderly and people with compromised immune systems are at greater risk of developing the cancer, which arises in skin nerve cells that respond to touch or pressure.

In a paper published in Science in December, Moore and his wife, Yuan Chang, who directs their lab, reported their identification of the virus and that it could be found in 80 percent of Merkel cell tumors. They cautioned that although up to 16 percent of the population carries MCV, very few will develop cancer.

There is no treatment for MCV infection right now, but identifying the agent and understanding how it triggers disease could lead to targeted interventions, Moore said.

Coauthors of the study are Masahiro Shuda, Huichen Peng, Hyun Jin Kwon, Ole Gjerris, and Yuan Chang, all of the Molecular Virology Program at the University of Pittsburgh and Villanova; the Massachusetts Institute of Technology; Santa Fe Institute; and the University of Pennsylvania.

“Highly creative biomedical research, such as London plans to conduct with his well-deserved Pioneer Award, not only exemplifies the kind of great science that we value so much here at the University of Pittsburgh but also, in this case, holds tremendous promise for clinical advances,” said Arthur S. Levine, senior vice chancellor for the health sciences and dean of the School of Medicine. “Developing novel and innovative tools to study arrhythmias and better identify those patients who are at risk of unforeseen cardiac death holds the potential to save countless lives.”

Arrhythmias are a major cause of morbidity and mortality, with more than 250,000 people dying from sudden death each year in the United States. If successful, both techniques will increase understanding of arrhythmias, improve better identification of patients at risk for sudden death, and guide therapeutic interventions. Thus, identifying novel tools to study arrhythmias in vivo and stratify arrhythmic risk would represent a major advance in cardiovascular care.

Barry London, the Harry S. Tack Professor of Medicine and chief of the Division of Cardiology in Pitt’s School of Medicine, was named one of 16 NIH (National Institutes of Health) Director’s Pioneer Award recipients at the 2008 Pioneer Award Symposium on NIH’s Bethesda, Md., campus.

London is the first Pitt faculty member to receive the distinction.

The award gives London, who also directs the UPMC Cardiovascular Institute, $2.5 million in direct costs from NIH to conduct novel experiments to better identify patients at high risk for sudden cardiac arrest, for which no reliable drugs currently exist.

London and colleagues will develop two revolutionary techniques to image electrical activity in the heart. In the first project, London will adapt the most common clinical imaging technique, which is two-dimensional echocardiography (ultrasound imaging of the heart), to detect electrical activity of the heart in real time. In the second project, London and his colleagues will develop a modified adult stem cell implant to detect nervous system activity affecting the heart.

He will collaborate with Floridella Villanueva, a Pitt professor of medicine and director of noninvasive cardiac imaging and the Center for Ultrasound Molecular Imaging and Therapeutics at the UPMC Cardiovascular Institute. Villanueva and her colleagues at the center will develop an electrically sensitive microbubble contrast agent, which is a tiny, inert gaseous bubble injected into the bloodstream. When it is applied to ultrasound imaging, the microbubble will visualize electrical activity within the heart muscle.

“London’s concept of using microbubbles to noninvasively see pathways of electrical conduction in the beating heart is an ingenious idea,” Villanueva said. “This project truly embodies the spirit of the Pioneer Award to support high-impact, innovative work,” she added. If successful, the research will then be applied to humans.

NIH Director Elias Zerhouni said the Pioneer Awards, given to scientists at any career level, and National Physician-Award, aimed at early-career scientists, “are central elements of NIH efforts to encourage and fund especially novel investigator-initiated research, even if it might carry a greater than usual degree of risk of not succeeding.”

In 2007, Pitt assistant professor of psychiatry and pediatrics Eva M. Szigethy was one of the 20 initial recipients of the NIH Director’s New Innovation Awards, which carry a $1.5 million grant in direct costs. Her research was titled “Understanding and Treating Neuropsychiatric Symptoms of Pediatric Physical Illness.”

This year’s 12 other Pioneer Award recipients are faculty researchers at the California Institute of Technology; Harvard, Northwestern, Princeton, and Stanford universities; the Massachusetts Institute of Technology; Santa Fe Institute; and the University of Pennsylvania.

“Highly creative biomedical research, such as London plans to conduct with his well-deserved Pioneer Award, not only exemplifies the kind of great science that we value so much here at the University of Pittsburgh but also, in this case, holds tremendous promise for clinical advances,” said Arthur S. Levine, senior vice chancellor for the health sciences and dean of the School of Medicine. “Developing novel and innovative tools to study arrhythmias and better identify those patients who are at risk of unforeseen cardiac death holds the potential to save countless lives.”

Arrhythmias are a major cause of morbidity and mortality, with more than 250,000 people dying from sudden death each year in the United States. If successful, both techniques will increase understanding of arrhythmias, improve better identification of patients at risk for sudden death, and guide therapeutic interventions. Thus, identifying novel tools to study arrhythmias in vivo and stratify arrhythmic risk would represent a major advance in cardiovascular care.
Pitt's Allegheny Observatory Open House Set for Oct. 3

Explore the heavens and a historic scientific landmark during a 7 to 10 p.m. Oct. 3 open house at Pitt's Allegheny Observatory. The free event will allow groups to enter every half hour; reservations and tickets are required.

During the open house, visitors can freely roam the observatory and peer into the night sky through the 30-inch Thorne Refractor telescope—a 47-foot telescope normally reserved for research. In addition, members of the Amateur Astronomers Association of Pittsburgh will set up telescopes on the observatory lawn for the public. If the night is clear, guests can catch a close-up of Jupiter through the 13-inch Fitz-Clark Refractor telescope. Constructed in 1861, the Fitz-Clark was the primary telescope for the first Allegheny Observatory and the third-largest telescope in the world when it was built. It enabled a number of early breakthroughs in astronomy, including visual proof that Saturn's rings comprise orbiting particles.

As one of the world's major centers for astronomical research, the observatory houses one of the oldest and largest collections of photographic plates of star fields; the collection began in 1914 and now boasts more than 110,000 images. Unlike regular observatory tours, the open house allows people to bravely traverse through these plates and take self-guided tours of the observatory's research rooms.

The observatory is located at 159 Riverview Ave., Riverview Park, North Side. Reservations are limited to six people per group and can be made by calling the observatory at 412-321-2400 between 9 a.m. and 5 p.m. For more information, visit the observatory's Web site at www.pitt.edu/~aobsvtry.

—Morgan Kelly

Pitt's Katz School Unveils State-of-the-Art Financial Lab

Pitt's Joseph M. Katz Graduate School of Business has added a key tool to its experience-based learning curriculum: a new state-of-the-art financial laboratory. A ribbon-cutting ceremony for the financial analysis lab, hosted by Pitt Provost and Senior Vice Chancellor James V. Maher and John T. Delaney, dean of the Katz School and the College of Business Administration (CBA), will be held at 11:30 a.m. Oct. 3 on the second floor of Morey Hall. An interactive demonstration of the room's capabilities will follow the ceremony.

The $2.3 million, 3,000-square-foot lab features a financial trading simulator, stock tickers, tele display boards, 58 computer stations, live news feeds, and classroom space. It provides students with real-time stock market data and access to faculty who are seasoned in global financial markets. Courses geared toward both CBA upperclassmen and Katz graduate students, will be tailored to give students a serious glimpse into the world of financial markets.

—Amanda Leff

Heinz Endowments Funds Center for Healthy Environments and Communities at GSPH

In an effort to expand environmental public health efforts in Pitt's Graduate School of Public Health (GSPH), the Heinz Endowments has awarded $200,000 to the school's Center for Healthy Environments and Communities (CHEC). The grant will help support the Allegheny River Stewardship Project—a community-based environmental health project exploring water contamination in the Allegheny River, one of CHEC's flagship programs.

Founded with initial funding by the Heinz Endowments in 2004, CHEC works to conduct research on the relationship between the ecosystem and human health and to serve as a resource for data, educational materials, and general information on conservation and healthy and sustainable living. The renewed funding will allow CHEC to expand the geographical scope of the Allegheny River Stewardship Project into other areas in Pennsylvania, Ohio, and West Virginia, and to map water pollution concentrations to better understand health risks from environmental contamination.

“One of the things we strive to do with the center is to help individuals and communities identify the most important environmental problems they face and empower them to develop their own action plans for healthy living,” said Conrad D. Voiz, director of CHEC and an assistant professor in GSPH's Department of Environmental and Occupational Health. “We are extremely grateful to the Heinz Endowments for its continued and sustaining support of this mission.”

According to Voiz, CHEC employs a participatory research model based on an equal partnership between traditionally trained experts and local residents. “We believe that it is vital to involve community members in research processes so that they have a stake in the health and well-being of their own communities,” said Voiz.

In addition to the Allegheny River Stewardship Project, other CHEC initiatives include identifying environmental risk factors for high-pret term delivery rates, low birth-weight rates, and high asthma rates in the Braddock-Rankin area of Pittsburgh; working with the Pittsburg Public Schools to improve the health and nutrition of students; and conducting training with physicians on environmental health issues. Other CHEC faculty members include Robbie Ali and Ravi Sharma, both assistant professors in Pitt's Department of Behavioral and Community Health Sciences, and Charles Christian, CHEC manager. For more information on CHEC, visit www.checc-pitt.edu.

One of the largest and most innovative independent philanthropic foundations in the country, the Heinz Endowments awarded more than $84 million in grants in 2007.

By Clare Collins

Oct. 1 Memorial Service Set for Late Pitt Professor Keiko I. McDonald

A memorial service for the late Keiko I. McDonald, author and University of Pittsburgh professor of Japanese literature and cinema, will be held at 3 p.m. Oct. 1 in Heinz Chapel.

McDonald, an avid angler, passed away while fishing.

A memorial service for the late Keiko I. McDonald, author and University of Pittsburgh professor of Japanese literature and cinema, will be held at 3 p.m. Oct. 1 in Heinz Chapel.

McDonald, an avid angler, passed away while fishing.

A memorial service for the late Keiko I. McDonald, author and University of Pittsburgh professor of Japanese literature and cinema, will be held at 3 p.m. Oct. 1 in Heinz Chapel.

McDonald, an avid angler, passed away while fishing.

A memorial service for the late Keiko I. McDonald, author and University of Pittsburgh professor of Japanese literature and cinema, will be held at 3 p.m. Oct. 1 in Heinz Chapel.

McDonald, an avid angler, passed away while fishing.

A memorial service for the late Keiko I. McDonald, author and University of Pittsburgh professor of Japanese literature and cinema, will be held at 3 p.m. Oct. 1 in Heinz Chapel.

McDonald, an avid angler, passed away while fishing.
Hard Work, High Achievement, and Immeasurable Impact

This is the printed version of the report delivered by Chancellor Mark A. Nordenberg at the June 27, 2008, annual meeting of the University of Pittsburgh Board of Trustees.

Thomas Edison once said, “Opportunity is missed by most people because it is dressed in overalls and looks like work.” That is a particularly telling observation, coming, as it did, from the “Wizard of Menlo Park.” Mr. Edison, of course, remains this country’s unquestioned champion when it comes to innovation: the holder of nearly 1,100 patents; the creator of the first industrial research laboratory; the inventor of such products as the incandescent light bulb, the phonograph, and the motion picture projector; and, to mention the voting booth, which, at least in some places, seems not to have been improved since his day; and the founder of the company that became General Electric.

Decades later, in what we think of as the “age of innovation,” it is not unusual to hear the view expressed that there is a basic disconnect between the “blue-collar values” that made this region great and the “new-knowledge economy” that will provide the foundation for its future. Certainly, times have changed. But when you look at our home region’s earlier industrial history; the successes of corporations like Westinghouse Electric, U.S. Steel, PPG Industries, Alcoa, and H.J. Heinz were grounded not only in hard work but in smart work, tied to superior products and more efficient processes born through innovation.

And today, even in a 21st-century institution of higher learning and research, which is fueled by its intellectual power, hard work never has gone out of style. Think, for example, about the compelling news from a single day that we celebrated just a few weeks ago.

First, media outlets around the world highlighted the work done by a team of scientists led by Pitt Professor of Neurobiology Andrew Schwartz. The New York Times began its front-page article with the following description:

“Two monkeys with tiny sensors in their brains have learned to control a mechanical arm using it to reach for and grab food and even to adjust for the size and stickiness of the morsels when necessary… [This is] the most striking demonstration to date of brain-machine interface technology. Scientists expect that technology will eventually allow people with spinal cord injuries and other paralyzing conditions to gain more control over their lives.”

Praised with that story was a report that another Pitt team, this one led by Hillman Professor of Pediatric Immunology Massimo Trucco and his colleagues, developed a new vaccine approach that had prevented and even reversed new-onset cases of type 1 diabetes in animals. That approach currently is being tested in humans in a Phase 1 clinical trial that has been approved by the U.S. Food and Drug Administration.

We think of such developments as “breakthroughs”—and in terms of their advancement of scientific understandings, they are. But such advances do not just suddenly happen. Instead, though Mr. Edison’s overlords may have been converted into lab coats, these important forms of progress almost always are the result of tens of thousands of hours of effort, most often expended by large numbers of people over the course of many years.

The work that enables Pitt to continue moving forward involves contributions of countless types. Those contributions are made by committed members of our community, dressed in whatever attire is appropriate for their own institutional responsibilities.

The still-growing record of success crafted at the direction and with the support of this board is an enviable one: 13 consecutive years in which each and every year has been markedly better than the one that preceded it. That progress is the product of a well-developed ability to recognize and capitalize on a broad range of opportunities. And both seizing opportunities and meeting the challenges that typically travel with them required creative thinking, high ambition, a commitment to mission, and a real appetite for hard work.

In terms of overall progress forged by that work, last year we celebrated the fact that Pitt had climbed into the very highest cluster of the country’s top public research universities in the annual assessment The Top American Research Universities, published by the Center for Measuring University Performance. That recognition was a source of special pride for a number of reasons.

• The clustering done in this study is tied to objective measures across key areas of performance—encompassing research, private support, faculty, graduate and postgraduate programs, and quality undergraduates—and is not simply another subjective survey of reputation.
• To climb from the fourth cluster, which already was a high ranking, to the inaugural 2006 study to the first cluster just six years later required that we improve our relative position with respect to 15 of this country’s finest universities, all formidable competitors and all committed to moving forward themselves.
• And reaching the top cluster put us in very distinguished company, as we joined just six other top-ranked institutions—Berkeley, Illinois, Michigan, North Carolina, UCLA, and Wisconsin.

Mindful of Irving Berlin’s admonition that “the toughest thing about success is that you’ve got to keep on being a success,” we were particularly heartened to learn, when this year’s The Top American Research Uni...
versities report was released, that its highest cluster was unchanged. There was Pitt, again in the top-ranked group.

When you are in the highest group, some might say that there is no room to rise. But we know that we have room to improve on multiple fronts. To convey some sense of our ongoing quest for ever-higher levels of quality, I want to focus on three key topics today: the continuing climb of Pitt students, the growing stature and impact of Pitt faculty members, and the increasing importance of Pitt’s private benefactors. In doing so, I will share some additional numbers, demonstrating how far we have come and how our momentum continues to build.

But I will spend even more time highlighting inspiring human examples.

The Continuing Climb of Pitt Students

The external review commissioned by this board in 1996 explicitly concluded that our “average SAT scores and high school rankings of the entire undergraduate entering classes” were “disappointingly low compared to the Association of American Universities cohort.” As a result, we made attracting higher-achieving undergraduates one of our highest priorities, and our continuing record of improvement—not only compared to our less-enviable position in the mid-1990s, but also to more recent years, which were themselves a source of shared pride—has been remarkable.

In 1995, our baseline, we attracted 7,825 applications for admission to the undergraduate programs on the Oakland campus. Last year, we received 19,056 applications, and this year, we are up to 20,639. Because of the different starting points, it is hard to know whether the 164 percent increase since 1995 or the 8 percent increase since 1997 is more impressive. But trend lines show that we increasingly have become an institution of choice within the critical population of potential students. And from our larger applicant pool, we have been able to attract better and better-credentialed students.

In 1995, for example, our average SAT score was 1110. Last year, it was 1248, and this year (though these numbers may change some over the course of the summer), we stand at 1265.

And in 1995, just 19 percent of our freshmen had graduated in the top 10 percent of their high school classes. Last year, that number had risen to 48 percent, and this year, we currently stand at 50 percent.

Year after year, these accomplished high school applicants have become high-achieving Pitt undergraduates—one telling indication that we are discharging our most basic responsibility as an educational institution. In fact, our record as one of this country’s most consistent producers of top-performing undergraduates has become a defining institutional quality, and we continue adding to it.

This year, for example, Eleanor Ott, a University Honors College sophomore majoring in chemical engineering, and Charles Sleasman, a University Honors College junior majoring in physics and mathematics, were named Goldwater scholars—the country’s highest undergraduate honor for students studying science or engineering.

And past national scholarship winners continue to earn new forms of recognition. This spring, for example, Justin Chalker (A&S ’06), who currently is studying at Oxford as a Rhodes scholar, and Anna Quider (A&S ’07), who currently is studying at Cambridge as a Marshall scholar, both won National Science Foundation Graduate Research Fellowships to support their doctoral studies.

But it is not just those students earning high national honors who are true achievers. Day after day, tens of thousands of Pitt students are crafting records of accomplishment as they build the educational foundation from which they will pursue their dreams. Increasingly, and to an extent that is heartwarming, our students not only are advancing their own academic agendas but also are regularly and visibly expressing their gratitude both for the opportunities and for the supportive culture they have found here.

The most striking example was last fall’s student-sponsored I Love Pitt Day, something that none of us reasonably could have expected, even from a very happy student body. Later in the year, our students sprang another surprise by naming their new social and recreational center in the William Pitt Union Nordy’s Place.

The use of this nickname from my own student days, reborn in our current student body, gives this designation an apparent personal ring. But it more accurately can be viewed as expressing appreciation for the student-oriented commitment of Pitt’s entire leadership team. Clearly, we have moved a long way from the student culture of a decade years ago, when Pitt undergraduates were described by our external reviewers as inadequately credentialled, underappreciated, and largely disengaged.

One force that has helped generate this closer sense of community is pride in Pitt athletics, a force that extends well beyond our student body. And recent months have given all Panther fans plenty to cheer about.

Our football team derailed the national championship-bound “Mountain-
ner Express” in a game that was nationally televised from Morgantown, W.Va.

Our men’s basketball team, playing in what it affectionately describes as its second home, won the Big East tournament in a decisive upset of a very good Georgetown team at Madison Square Garden.

Our women’s basketball team provided us with a season full of thrills and advanced to the NCAA’s “Sweet 16” round for the first time in Pitt history.

And wrestler Keith Gavin completed a remarkable 27-win undefeated season—the first undefeated season for a Pitt wrestler...
Terry Clark

had earned a perfect 4.0 GPA. That group included 21 student-athletes who earned grade point averages (GPAs) of 3.0 or higher during the preceding two semesters. This past term, the Pitt Alumni Association honored 305 student-athletes who had

citizenship and commitment to academics in 20 years—and claimed an NCAA championship.

Of course, we also are proud of the good citizenship and commitment to academics that sit at the heart of our athletics program. This past term, the Pitt Alumni Association honored 305 student-athletes who had earned grade point averages (GPAs) of 3.0 or higher during the preceding two semesters. That group included 21 student-athletes who had earned a perfect 4.0 GPA.

The Growing Stature of Our Faculty

ough their work is not performed in arenas packed with fans, when it comes to both national recognition and work of global impact, our faculty also had a championship-level year. This is a group that not only sits at the heart of our educational mission, but also continues to make very significant contributions to new knowledge through scholarship and research.

Collectively and comparatively, this was another great year in terms of the research support attracted by members of our faculty. The most recent comparative statistics released by the National Science Foundation reveal that Pitt ranks 11th nationally in terms of total federal science and engineering research and development support. We sit just outside a top 10 that consists of Johns Hopkins, the University of Washington, Penn, UCLA, Michigan, Stanford, the University of California at San Francisco, Duke, Columbia, and Harvard.

In terms of National Institutes of Health (NIH) support attracted by members of our faculty, we moved into sixth place nationally during the past year. The NIH top 10 consists of Harvard, Johns Hopkins, Penn, UCSC, the University of Washington, Pitt, UCLA, Duke, Michigan, and Washington University in St. Louis.

Obviously, we can be very proud to be so well positioned in that distinguished company. However, as you can see, we are now poised to move even higher—into the top 10 in total federal science and engineering research and development support and into the top five in NIH funding. And it is our intention to do both.

Embedded in our large annual research expenditures—which should exceed $630 million this year—is support for very important initiatives. Included in this year’s new federal grants, to give just a few examples, were $8 million to lead the largest study ever of the autoimmune disorder myositis, $16 million to establish an HIV research center, $4.75 million to launch a new center on spinal cord injuries, and $9.6 million to elevate our autism research center into an Autism Center of Excellence.

Moving further away from the numbers, the special forms of recognition won by faculty members across the disciplines during the last year were very impressive. For example:

• David Lewis, Endowed Professor in Translational Neuroscience and director of our Translational Neuroscience Program, was elected to membership in the Institute of Medicine;

• Isabel Beck, emeritus professor of education and senior scientist in our Learn- ing Research and Develop- ment Center, was elected to the National Academy of Education;

• Susan Amara, Thomas Detre Professor of Neuroscience and chair of the Department of Neurobiology, George Kingling, vice provost for research and W.K. Whiteford Professor of chemical and petroleum engineering; and Ching-Chung Li, professor of chemical and computer engineering and of computer science, were elected fellows of the American Association for the Advancement of Science; and

• And Nuel Belnap, the Alan Ross Anderson Distinguished Professor of Philosophy, was elected a fellow of the American Academy of Arts and Sciences. This is the third consecutive year that a Pitt philosopher has received this honor.

Other high honors received by faculty during the past year included the following:

• Lee Antoinette Darville, professor of pediatrics and immunology, received one of just 12 Individual Biomedical Research Awards from the Hartwell Foundation;

• Toi Derricotte, professor of English, received both the Elizabeth Kray Award from Poets House and the Barnes & Noble Writers Awards Award;

• Professors William Klimk from the Department of Psychiatry and Chester Mathis from the Department of Radiology received the American Academy of Neu- rology’s Potamkin Prize (also known as the “Nobel Prize of Neurology”) for their pioneering work in the early diagnosis of Alzheimer’s disease; and

• And Marcus Rediker, chair of the Department of History, received both the Merle Curti Award from the Organization of American Historians and the George Washington Book Prize for his book The Slave Ship: A Human History.

We continue to attract the highest honors bestowed by our professional colleagues. The numbers—which should exceed $630 million this year—are in the early years of their careers.

In terms of National Institutes of Health support attracted by members of our faculty, we moved into sixth place nationally during the past year.

who will join the faculty of our School of Medicine in just a few days.

• Five very talented assistant professors—four from the Swanson School of Engineering and one from the School of Arts and Sciences—won very prestigious Faculty Early Career Development Program awards from the National Science Foundation. They are Tracy Cui from bioengineering, Di Gao from chemical and petroleum engineering, Rebecca Hwa from computer science, Lisa Weiland from mechanical engineering and materials science, and Jun Yang from electrical and computer engineering.

• And Steven Little, assistant professor of chemical engineering, received another very high national honor, a 2008 Beckman Young Investigators Award from the Arnold and Mabel Beckman Foundation, to support his innovative research.

I doubt that we ever have had a year in which so many junior faculty members captured such prestigious national awards. And, of course, we are doing everything that we can to build on not only the culture but also the infrastructure to support our award-winning researchers, whether junior or senior. Among the very visible steps taken
to advance our collective research strength during the past year was the establishment of our Center for Vaccine Research, the Richard King Mellon Foundation Institute for Pediatric Research, and our new Center for Energy.

At the same time, existing centers of academic excellence continued to distinguish themselves. For example, our Center for Vaccine Research, the Richard King Mellon Foundation Institute for Pediatric Research, and our European Union Center were redesignated as our International Business Center and our Center for Vaccine Research, the Richard King Mellon Foundation Institute for Pediatric Research.

The Increasing Importance of Private Support

We are pressing forward on this ambitious path even though, as you know, there are many financial difficulties in any time, including this one. The national economy, including rapidly rising utility charges, construction and food costs, and other things that we have had to adjust for. And while the specific problems that we have struggled with are not unique to our institutions, the broader financial situation is a significant challenge.

Certainly, the examples of high achievement continue to distinguish our organization. In 2014, a $10 million grant to support a vaccine research center was awarded. In 2004, he was awarded the John Fritz Medal, widely regarded as the highest honor in the engineering profession. This past year, in recognition of his extraordinary generosity, Pitt's School of Engineering was renamed the John A. Swanson School of Engineering.

Our goals, though, always have extended beyond building for today. Instead, particularly with Pitt's proud 221-year history to inform us, we understand that we also are building for a far more extended future.
Lectures/Readings

Reading by Maxine Hong Kingston, Pulitzer Prize-winning author and National Book Critics Circle Award winner, 8:30 p.m. Sept. 29, David Lawrence Hall, Pittsburgh Contemporary Writers Series, 412-624-4498, www.pittarts.pitt.edu.

Full Fall Job Fair/Internship Fair, noon-6 p.m. Oct. 1, Peters Events Center, University Center, 412-624-7130, careers.pitt.edu.

RAD Day at Society for Contemporary Craft, free admission, 10 a.m.-5 p.m. Oct. 2, 2100 Smallman St., Strip District, Pittsburgh Cultural Trust, www.sccontemporarycraft.org.

Radical Days, www.contemporarycraft. com, clas@pitt.edu.

The Wonder Bread Boy by Pat Hazell, Pittsburgh Public Steel engagement, Lester Ungerman Studio Theater at City Theater, 1500 Bingham St., South Side, 412-314-2489, www.citytheatre.org.

Pitt PhD Dissertation Defenses

Melinda R. Bolan, School of Educa- tion, “Effects of Training Status, Exercise Mode, and Intensity on Differentiated Rat- tings of Perceived Exertion,” 1 p.m. Oct. 2, Conference Room, Pittman Events Center.

Pitt’s Science 2008 Program to Highlight Contemporary Research, New Technology

By Amy Dugas Rose

Science 2008, Pitt’s annual showcase of science and technology, will feature keynote lectures by four of the nation’s leading scientists and highlight current research by Pitt and Carnegie Mellon University researchers as well as scientists working in local industries.

The two-day program will be held Oct. 2 and 3 in Alumni Hall. Admission is free and open to the public, but registration is required, either on site at the event or in advance at www.science2008.pitt.edu.

“We have a duty to harness the scientific advances entrusted to us by previous generations and to further develop them for our own benefit as well as for those who will follow us,” said Arthur S. Levine, senior vice chancellor for the health sciences and dean of the School of Medicine. “This is our time and our chance to make a difference.”

Science 2008 will feature, in addition to the keynote speakers, presentations by more than 50 researchers from Pitt, Carnegie Mellon, and local industry; a showcase of new technology developed by Pitt researchers that is available for licensing; research poster sessions; a professional development workshop for early-career scientists; and other events.

“One of the truly remarkable aspects of this annual event is its cross-campus appeal to students, researchers, and faculty from diverse programs in the sciences, engineering, medicine, the other health sciences, and computation,” said James V. Maher, Pitt provost and senior vice chancellor. “In addition, this program is a tremendous opportunity to welcome our colleagues from Carnegie Mellon and other local universities, as well as scientists working in local industry, to come and share ideas and common interests.”

The full program of events for Science 2008 can be found online at www.science2008.pitt.edu. Highlights follow.

Plenary Lectures

The Provost Lecture, “Bridging the Scales: Connecting Computer Simulations of Molecular Phenomena to the Problems of the Real World,” 4 p.m. Oct. 2, Gregory A. Voth, Distinguished Professor of Chemistry and director of the Center for Biophysical Modeling and Simulation at the University of Utah.

The 2008 Mellon Lecture, “The Unfolded Protein Response: How the Endoplasmic Reticulum Talks to the Nucleus,” 11 a.m. Oct. 3, Peter Walter, professor and chair of biochemistry and biophysics at the University of California, San Francisco.

The Klaus Hofmann Lecture, “Two Views of Brain Function,” 4 p.m. Oct. 3, Marcus E. Raichle, a professor of radiology, neurology, neurobiology, biomedical engineering, and psychology at Washington University in St. Louis.

Spotlight Sessions

Twelve spotlight sessions will feature some of the latest and most innovative science being explored by Pitt and Carnegie Mellon researchers. The topics include nanoscience and nanosafety, immunology, and stem cells in development and in cancer, among many others.

Science at Work Sessions

In collaboration with scientists working in local industry, Science 2008 also will feature sessions on various topics with scientists and researchers from IBM, Innovation Works, Pittsburgh Life Sciences Greenhouse, Renal Solutions, Vivisimo, and Intel Research.

“One of the truly remarkable aspects of this annual event is its cross-campus appeal to students, researchers, and faculty from diverse programs in the sciences, engineering, medicine, the other health sciences, and computation.”

—James V. Maher