University of Pittsburgh alumnus Lucile L. Adams-Campbell has been elected to the Institute of Medicine (IOM), an honor membership organization established in 1970 as a component of the National Academy of Sciences that serves as a national advisory body on matters of health and science policy. Adams-Campbell is associate director for minority health and health disparities research and professor of oncology at Georgetown University Medical Center’s Lombardi Comprehensive Cancer Center.

“The election of distinguished Pitt alumnus Lucile Adams-Campbell to the Institute of Medicine is richly deserved recognition for her accomplishments as an internationally respected authority on health disparities,” said Pitt Chancellor Mark A. Nordenberg. “Dr. Adams-Campbell has been honored by her alma mater as a Distinguished Alumni Fellow and as the recipient of the Graduate School of Public Health Alumni Society’s Distinguished Alumni Award. Having come to know her and her work, I, along with the Pitt community, salute Dr. Adams-Campbell and her groundbreaking research in community health.”

Adams-Campbell is one of only 65 new members and five foreign associates announced at the IOM’s Oct. 13 annual meeting. Current active members elect new members from among candidates nominated for their professional achievement and commitment to service.

“It is a great pleasure to welcome these distinguished and influential individuals to the Institute of Medicine,” said IOM president Harvey V. Fineberg in announcing IOM’s new members and foreign associates. “Members are elected through a highly selective process that recognizes people who have made major contributions to the advancement of the medical sciences, health care, and public health.”

“To be recognized by the incumbent members of the Institute of Medicine for my scientific accomplishments in cancer health disparities and public health is incredible and overwhelming,” said Adams-Campbell. “As a member of the IOM and a resident of a city with unparallelled disparities, I will strive to enhance the national focus on health disparities research and prevention education. It is an honor and a privilege to be a part of this phenomenal organization.”

Adams-Campbell, who received her PhD in epidemiology from Pitt in 1983 and completed a National Institutes of Health-funded postdoctoral fellowship here before joining Pitt’s Department of Epidemiology as an adjunct professor of epidemiology, is an internationally recognized expert on health disparities. She specializes in community health research, interventions, and outreach and has played a leading role in the Washington, D.C., cancer and public health community.

Adams-Campbell studies issues that affect populations at the greatest risk for developing cancer with a focus on prevention. She has participated and led several large cohort studies of African American women and played a leading role in bringing to D.C. the Boston University Black Women’s Health Study, the largest study of African American women.

Much of Adams-Campbell’s research focuses on energy balance involving diet and exercise. Washington, D.C., has higher-than-average rates of obesity, diabetes, cancer, heart disease, and heart disease, all of which may be affected by diet and exercise, she says. Through community-based interventions, she hopes to decrease obesity and mortality from these related diseases.

Prior to joining Lombardi Cancer Center earlier this year, Adams-Campbell served as director of the Howard University Cancer Center.

Adams-Campbell received her bachelor’s and master’s degrees from Drexel University. She currently serves as a reviewer for or an editorial board member of eight journals and has published more than 100 peer-reviewed research papers.

Among this year’s other IOM honorees is David H. Perlmutter, the Vira I. Heinz Professor of Neurological Sciences and chief of the department of neurology at the University of Pittsburgh School of Medicine. (See Oct. 20, 2008, Pitt Chronicle).

Patents Awarded to Pitt Innovators Rise 72% in FY 2008. Report Says

By Lauren O’Leary

A tiny sensor composed of carbon nanotubes that will alert asthma sufferers to impending attacks. Training materials for educators that are changing classrooms around the country. These are just some of the innovations highlighted in the University of Pittsburgh Office of Technology Management (OTM) 2008 Annual Report.

“Innovation commercialization activity at Pitt has continued at a brisk, healthy pace, fueled in part by increased education and awareness efforts, cultural shifts, strides in customer service, and the more than $642 million in research funding received last year by the University,” said Marc S. Malandro, associate vice chancellor for technology management and commercialization at Pitt. “The results of our unique collaboration with Pitt innovators shows that, once again, University faculty, staff, and students are contributing significantly to the betterment of humankind through both their innovations and their participation in the commercialization process.”

Last year, according to Malandro, more than 400 Pitt innovators participated in some part of the commercialization process through the OTM and its affiliate, the Office of Enterprise Development, Health Sciences (OED).

As the hub of commercialization activity at Pitt, the OTM works with innovators to bring their ideas from the laboratory to the marketplace. Among the highlights in this year’s report, which details advances by the OTM and the OED, are a 72 percent increase in U.S. patents awarded to Pitt innovators, from 21 in fiscal year 2007 to 36 in FY 2008, and a nearly $2 million increase in revenue generated from licensed and optioned innovations, from $7.13 million in FY 2007 to $9.09 million in FY 2008.

Patent applications increased as well, to 100 in FY 2008, up from 95 in FY 2007, and more than double the number just five years ago, 49.

Three new start-up companies were spun off of Pitt innovations in FY 2008, bringing the total number of startups created since 2003 to 42. Cardiobiotics, Inc., cofounded by Pitt professor of surgery Marco Zenati, is developing highly articulated robotic probes designed for use in minimally invasive surgeries. EPR-Technologies, Inc., is using newly developed medical procedures involving emergency hypothermia to put trauma victims in a temporary state of suspended animation until appropriate treatment can be obtained. EPR (Emergency Preservation and Resuscitation) uses a process and equipment developed by Patrick Kochanek, Xiannen Wu, and William Stezoski in Pitt’s Department of Critical Care Medicine and Samuel Fisherman in Pitt’s Department of Surgery.

Prevencio, LLC, was created to use a series of protein signatures to discover signs of vascular disease. The process was developed by William LaFramboise in Pitt’s Department of Pathology and Oscar Marroquin, Dennis McNamara, and Suresh Mulukutla in Pitt’s Department of Medicine.

Pitt Hosts Social Scholar for 2008 Raymond R. Webb Jr. Lecture

The University of Pittsburgh will host Elizabeth Beck, a professor in Georgia State University’s School of Social Work, for the 2008 Raymond R. Webb Jr. Lecture at noon Nov. 5 in Pitt’s School of Social Work Conference Center.

The lecture, titled “Conflict Transformation, Restorative Justice, and the Role of Social Workers in Addressing Neighborhood Violence,” is free and open to the public.

Beck is a coauthor of A Shadow of Death: Restorative Justice and Death Row Families (Oxford University Press, 2007), an indepth look at the lives of the family members of capital offenders. She has consulted on numerous death penalty cases and conducts training sessions for capital defense lawyers across the country. She teaches courses in social welfare policy, social welfare history, and community development.

Pitt alumnus Raymond R. Webb was an advocate for and practitioner of community mental health. From 1969 to 1989, he directed the Allegheny East Mental Health/Mental Retardation Center. Inc. Webb passed away in March 2016. In his memory, loved ones partnered with Pitt’s School of Social Work to create the Raymond R. Webb Endowed Fund, which provides financial support for graduate students in Pitt’s School of Social Work and supports the annual Raymond R. Webb Jr. Lecture.

For more information, contact 412-624-6304 or visit www.soswwork.pitt.edu.

—Anthony M. Moore

Pitt Honors College to Host Lecture by International Security Expert

The University of Pittsburgh Honors College will present a lecture titled “How the Next President Can Win the War on Terror,” featuring Robert Pape, professor of political science at the University of Chicago, at 2:15 p.m. Nov. 7 in the Honors College, Cathedral of Learning. A Harry S. Truman Scholar, Pape graduated summa cum laude and Phi Beta Kappa, receiving the Bachelor of Arts degree in political science from Pitt’s School of Arts and Sciences in 1982.

The event is free and open to the public, but space is limited.

For more information, contact Edward McCord, 412-624-6886.

—Patricia Leonardo White

Pitt to Host 23rd Annual Polish Festival Nov. 9

Music, dance, and delicious Polish fare are the highlights of the University of Pittsburgh PolishFest, from noon to 5 p.m. Nov. 9 in the Cathedral of Learning Commons Room.

The Nationality Rooms Program and the Polish Nationality Room Committee are sponsoring the free public, family-oriented event. The 23rd annual PolishFest, held to promote and celebrate Polish culture and traditions, will feature performances by the Zalonic folk dancers and folk singer Radiosowa Fizk, crafts for children, art demonstrations, cultural displays, egg decorating, and Polish imports, as well as instruction in Polish folk dancing.

In addition, visitors can purchase such authentic Polish dishes as stuffed cabbage, sausage sandwiches and sauerkraut, noodles and cabbage, pierogi, and baked goods. Other items to be sold at the festival include woven wooden baskets, woven and Polish plates.

Proceeds from the festival benefit the Polish Room Scholarship Fund. More information is available at 412-624-6150.

—Patricia Leonardo White

Three Grapes of Wrath Opera Programs Planned for November

Pitt ARTS is planning three programs in November for the Pittsburgh premiere of Pittsburgh Opera’s The Grapes of Wrath.

On Tuesday, Nov. 11, from noon to 1 p.m. in the William Pitt Union Assembly Room, Pitt ARTS will offer a free opera lunchbox featuring Ricky Ian Gordon, composer of The Grapes of Wrath opera, and the opera’s librettist (writer of the text for the score) Mark Heidemann. Korie. Gordon will play and sing some pieces from the opera.

A Pitt music department colloquium on the opera will be held from 4 to 5 p.m. Nov. 14 in Room 132 of the Music Building. The event is free to the public and a reception will follow. Gordon and Korie will explore the contemporary relevance of the issues and themes in the John Steinbeck novel, such as the foreclosure crisis, economic downturn, and domestic diaspora.

Pitt Night at the Opera for Grapes of Wrath will be held Nov. 15, when participants can meet the “Opera Lady,” Beth Parker, and the opera’s general and artistic director, Christopher Hahn. Free desserts and transportation to the opera are included in the cost of a Cheese Seats ticket for Pitt Night. Reservations should be made at the Pitt ARTS office in the William Pitt Union by Nov. 12.

For more information about all three programs, call 412-624-4498 or visit www.pittarts.pitt.edu.

—Annebelle Clippinger

Pitt Researchers Get $2.7 Million
For Radiation Drug

Researchers at the University of Pittsburgh School of Medicine have been awarded $2.7 million from the Biomedical Advanced Research and Development Authority, Department of Health and Human Services, to develop a radiation mitigator drug that could counter the effects of radiation exposure in case of large-scale public exposure.

The ultimate goal of the contract is to develop an easily administered drug that the Centers for Disease Control and Prevention in the Department of Health and Human Services can store and fly to hospitals and care facilities if and when an emergency occurs.

A team of researchers led by Joel Greenberger, professor and chair of the Department of Radiation Oncology in Pitt’s School of Medicine, will develop the GS-nitric oxide drug JP4-039, identified by the Pitt research team in 2004 as a radioprotector. Using both mouse-model and human cell and tissue research, they have shown that the drug, when delivered 24 hours after irradiation, enhances cell recovery.

According to Greenberger, JP4-039 can be delivered directly to the mitochondria, the energy-producing areas of all cells. When this occurs, the drug assists the mitochondria in combating irradiation-induced cell death.

“Currently, no drugs on the market counteract the effects of radiation exposure,” said Greenberger, whose lab is part of the University’s Center for Medical Countermeasures.

Pitt Hosts Polish Festival Nov. 9

The University of Pittsburgh will host its 23rd annual Polish Festival, a family-oriented event, from noon to 5 p.m. Nov. 9 in the Cathedral of Learning Commons Room.

The Nationality Rooms Program and the Polish Nationality Room Committee are sponsoring the free public event. The festival will feature performances by the Zalonic folk dancers and folk singer Radiosowa Fizk, crafts for children, art demonstrations, cultural displays, egg decorating, and Polish imports, as well as instruction in Polish folk dancing.

In addition, visitors can purchase such authentic Polish dishes as stuffed cabbage, sausage sandwiches and sauerkraut, noodles and cabbage, pierogi, and baked goods. Other items to be sold at the festival include woven wooden baskets, woven and Polish plates.

Proceeds from the festival benefit the Polish Room Scholarship Fund. More information is available at 412-624-6150.

—Patricia Leonardo White

For Radiation Drug

Researchers at the University of Pittsburgh School of Medicine have been awarded $2.7 million from the Biomedical Advanced Research and Development Authority, Department of Health and Human Services, to develop a radiation mitigator drug that could counter the effects of radiation exposure in case of large-scale public exposure.

The ultimate goal of the contract is to develop an easily administered drug that the Centers for Disease Control and Prevention in the Department of Health and Human Services can store and fly to hospitals and care facilities if and when an emergency occurs.

A team of researchers led by Joel Greenberger, professor and chair of the Department of Radiation Oncology in Pitt’s School of Medicine, will develop the GS-nitric oxide drug JP4-039, identified by the Pitt research team in 2004 as a radioprotector. Using both mouse-model and human cell and tissue research, they have shown that the drug, when delivered 24 hours after irradiation, enhances cell recovery.

According to Greenberger, JP4-039 can be delivered directly to the mitochondria, the energy-producing areas of all cells. When this occurs, the drug assists the mitochondria in combating irradiation-induced cell death.

“Currently, no drugs on the market counteract the effects of radiation exposure,” said Greenberger, whose lab is part of the University’s Center for Medical Countermeasures.
Homecoming 2008

2008 Awardees of Distinction

The Pitt Varsity Letter Club honored six former letter winners as 2008 Awardees of Distinction during the club’s 48th annual Award Dinner on Oct. 24 in Alumni Hall. The awards honor varsity letter winners who have distinguished themselves in their professions and communities. Pictured are (from left) Rande Stottlemyer (EDUC ’78), wrestling; Nick Generalovich (PHARM, Class of ’68), basketball; Donald Nania (EDUC ’78, EDUC ’86G), baseball; Rebecaa Zuccarelli Verbus (SHRS ’74, GSPH ’80), gymnastics; Henry Ford (CBA ’55), football; and James Covert (A&S ’91), football.

Homecoming Royalty

Chancellor Mark A. Nordenberg (far right) and F. James McCarl (CGS ’73), president of Pitt’s Alumni Association, congratulate Pitt’s 2008 Homecoming Queen Sandra Abla and King Akere Atte. The pair was crowned during the half time of Pitt’s Oct. 25 football game against Rutgers.
Creative Problem Solving Across Disciplines

Physical sciences and engineering graduate programs approach research from multiple perspectives

By Reid R. Frazier

Veronica Miller has spent the past few years as a University of Pittsburgh graduate student learning the intricacies of fluid dynamics, gaining expertise in concepts such as fluid flow and how turbulence is measured.

But Miller, who is pursing a PhD in mechanical engineering, wasn’t content to simply learn the concepts—she wanted to put her new knowledge to good use. So she also is studying renewable energy at Pitt’s Center for Energy, focusing in particular on hydroelectric turbines that can be dropped onto a riverbed or ocean floor to harness electricity from underwater currents. An expert-in-training in mechanical engineering, Miller is wading into other fields—environmental economics, ecology, electrical engineering, computer modeling—in an effort to make her research connect to real-world energy needs.

“If I want to tackle something as big as clean energy, I can’t just focus on mechanical engineering. In real cases, you have to be more than an expert in just one area,” she says.

Miller is one of more than 500 Pitt PhD students who are gaining expertise in the rapidly changing fields that have grown up in the physical sciences and engineering during the 20th and early 21st centuries. Pitt PhD students are very well grounded in the fundamentals of their chosen fields—chemistry, biology, physics, or a number of engineering specialties—but they are also oriented to addressing problems that are outside of their fields. Their mission is to be creative in other areas forces them to master things at the boundaries of their fields and others, to work or consult with experts in other fields, and to synthesize new solutions to problems with an amalgam of all these resources.

The examples that follow explore the rich variety of questions that current Pitt science and engineering PhD students are addressing.

The Creative Spark

A key component of a Pitt doctoral program—in any field—is the opportunity for students to look at problems creatively, from various vantage points. “Research isn’t just about answering problems at the back of the textbook,” says Provost and Senior Vice Chancellor James V. Maher. “You have to be able to study a problem, look for holes in the data, and wonder from where you might be able to draw a solution. It’s essentially a creative process.”

“Being a scientist isn’t like joining a guild, where you acquire a set of skills and go out and repeat those skills over and over again. You have to be able to go out and digest someone else’s scientific understanding and incorporate it into your own line of inquiry.”

—Stephen Weber

“Research isn’t just about answering problems at the back of the textbook. You have to be able to study a problem, look for holes in the data, and wonder from where you might be able to draw a solution.”

—James V. Maher

“Being a scientist isn’t like joining a guild, where you acquire a set of skills and go out and repeat those skills over and over again. You have to be able to go out and digest someone else’s scientific understanding and incorporate it into your own line of inquiry.”

—Stephen Weber

From left, John Leonard, an assistant professor of mechanical engineering and materials science; Cheng Cen, a fourth-year physics doctoral student; and Pitt physics professor Jeremy Levy are researching oxide nanowires that are only two nanometers wide, created with an atomic force microscope. Scientists believe nanowires could lead to increasingly smaller computers. “When you’re working with experts from other disciplines, you don’t have to be an expert in their fields, but you do have to know a little bit about what they do,” Levy says.
program works? Because students initially say they hate it. But after they’ve finished, they say they’re glad they did it.”

Stephen Weber, a Pitt professor and director of graduate studies for the chemistry department, says being prepared to move into an alternate research field is critical for research PhDs.

“That’s what a true PhD scientist is—someone who can go into a new field, read about it, learn about it, ask cogent questions about it. That’s what we’re training our students to do,” Weber says. “Being a scientist isn’t like joining a guild, where you acquire a set of skills and go out and repeat those skills over and over again. You have to be able to go out and digest someone else’s scientific understanding and incorporate it into your own line of inquiry.

In physics, students are encouraged to take courses in related disciplines. In engineering, students should have at least a basic understanding of other disciplines with which they interact, says Laura Schaefer, codirector of the Center for Energy and a professor of mechanical engineering. That means they must know the language of other disciplines: a ‘parameter’ in engineering could be a ‘variable’ in chemistry.

“I’ll encourage students to take a course in other departments or schools, even the same course could be taught totally differently,” Schaefer says. This type of cross-fertilization is a critical component of graduate education. While a student still needs to be an expert in a specific field to get a PhD, each student realizes that no branch of science exists in a vacuum. Increasingly, students need to work outside their disciplines to find new lines of inquiry and stay on the leading edge of discovery.

The Search for Energy Solutions

The emergence of research centers in energy, nanoscience, and computer simulation and modeling has accelerated this trend. Gerald Holder, the U.S. Steel Dean of the Swanson School of Engineering, says one of the Center for Energy’s purposes is to encourage collaboration between faculty and their graduate students from a variety of disciplines, schools, and departments. The energy question permeates all levels of global society, Holder says, adding that it makes sense to pull as many bright minds into energy research as possible.

“Society’s interested in this, and so are the students. What we’re trying to do with the center is to focus on creating new technologies by bringing people from around the University together to tackle the big issues,” Holder says.

The prospect of working in the alternative energy field attracted Miller to Pitt, where she is trying to determine which turbine designs can harvest the most energy with the least impact on the aquatic environment. The devices work a lot like submerged water wheels or windmills. Because the devices are in water, they are propelled by drag or lift, the same forces that make airplanes fly. The flow of water propels the turbine’s blades, which turn a shaft that generates electricity. Using computer-modeling software, Miller is analyzing how a series of turbine designs would impact the aquatic environment.

“If we know how water flows through the turbine device, we can estimate how fish will swim around them, and whether they’ll get stuck in the turbine blades,” says Miller, whose research could also lead to the development of a tidal turbine that would generate electricity from currents at the bottom of the ocean floor or tidal estuary. “She’s also working on a research proposal with David Sanchez, a graduate student in Pitt’s civil and environmental engineering department, to create a remote sensor for pollution in rivers that would measure electrical current fluctuations caused by certain kinds of pollutants. In addition, Miller is working with a Pitt mechanical engineering grad student on a project to install river turbines in Ghana. “Pitt really fosters an environment where we’re thinking about working with people in other fields: I’m not a civil engineer or an electrical engineer, but in order to solve some of these energy problems, I need to be able to work with these kinds of researchers.”

—Veronica Miller
Creative Problem Solving Across Disciplines

Continued from page 5

centrate on another side of the equation.”

Physics PhD students are still expected to have expertise in their field—they must know advanced electromagnetism, classical mechanics, and condensed matter physics. But when they go into biotechnology or nanoscience, they’ll also need to know how to cover ground in chemistry, biology, medicine, and mathematics, Lemon says.

“It’s important to be an expert in your own domain: The core task of training students will still be important, but you also have to learn how to learn, to learn what is needed to interface with collaborators in other disciplines. It’s a matter of becoming aware of what the possibilities are in research. When you’re working with experts in other disciplines, you don’t have to be the expert in their fields, but you do have to know a little bit about what they do.”

One of Levy’s students, Cheng Cen, is studying the electronic characteristics of these nanowires, specifically how electrical charges influence how nanowires behave. She says the research shows the nanowires have the potential to be manipulated into “single-electron transistors”—the tiniest of computing devices. “It’s like you’re writing on a canvas the width of a couple of nanometers,” says Cen, a fourth-year student. Though she’s in the physics department, Cen uses techniques and tools from chemistry and engineering labs. “We have to learn to use a variety of techniques; if it’s learning a new chemical process, you have to learn it; if it’s using a machine from engineering, you have to do it.”

Like Cen, Matt Kofke studies nanomaterials, but from the perspective of a chemist. Kofke, a second-year chemistry PhD student, is researching the optical transmission capabilities of some nanomaterials. Researchers in the field think the interaction of light on nanomaterials could be the key to developing sophisticated biosensors for certain antibodies, the development of more efficient solar cells, and improved fiber-optic communications. Kofke has had to learn concepts of wave physics, materials science, and engineering along the way. The research has involved reading a lot of textbooks in other fields, and, when he’s “stumped, asking someone for help. “That’s generally the best way to learn, and it’s worked pretty well for me,” he says. The most important thing to learn in graduate school is how to independently direct your own research, to solve your own problems without relying on someone else doing it for you.

Brett Allen is studying carbon nanotubes—tiny straw-like structures largely made up of carbon atoms. Scientists think these structures could be used in a variety of applications, including in energy. Allen, a third-year chemistry PhD student at Pitt, has studied nanotubes’ possibilities as a gas that is common in the breath of asthmatics. This could be used as a diagnostic tool. He also is studying how to “engineer” nanotubes to be used in car sequestration—the process of taking CO₂, the most abundant greenhouse gas, and converting it, for example, to decomposed by products that do not have the effects of global climate change. The ability to look at a research problem like nanotubes from various disciplines—chemistry, biophysics, materials science—is critical in being ready to follow the research wherever it leads, Allen says.

“Graduate school really focuses you on critical thinking—you’re taught to not just memorize things but to understand all the variables that can go into a problem,” Allen says. “A lot of the research in my field is brand-new. If you don’t have the ability to think through what’s going on, you’re never going to be able to understand what’s happening when you stumble on something new.”

Computer Simulation for Complex Phenomena

In another nascent area of scientific research—computer modeling and simulation—Pitt students also are taking an interdisciplinary approach to solving big scientific questions.

Sam Rothstein, a fourth-year PhD chemical engineering student, is using computer modeling to test ways to deliver drugs to AIDS patients and people with osteoporosis. Researchers use a variety of computer models to predict how drugs will be released in the body with different types of delivery systems (“vehicles”). Having developed a model that works in the lab, he will then test the system in a real-world setting.

With computer modeling, Rothstein says, he can make progress solving problems faster than he would using only a lab. “The two problems I’m working on, a sustained-release medication and a single-injection vaccine, have a combined 50 years of research, and no one has come close to creating a better delivery system,” Rothstein says. “Computer modeling is a way to examine more parameters, more possibilities, than the normal benchtop approach.”

Rothstein has taken an interdisciplinary approach to his research—a full semester of medical school courses and sessions with computer-modeling faculty to develop his simulations. The approach works because it allows researchers like Rothstein to make faster progress on the question they’re addressing. Instead of working on one part of the problem, like modeling a drug-delivery system, Rothstein can also take the results from his model and perform an experiment in the lab to take the research to the next level.

“I can talk to people who are experts in modeling, and I can talk to people who are experts in application. Being an interdisciplinary researcher means I can move the project forward,” Rothstein says.

Looking to the Future

The goal for students like Rothstein, Miller, Cen, and others is to help solve the big scientific problems of the 21st-century. To accomplish this, they have to master the tools and logic of their own disciplines while maintaining the intellectual acuity to understand and collaborate with scientists in other fields. That is what has fueled the great scientific discoveries of the past, and it is what funders like the National Science Foundation are looking for, says Larry Shuman, professor and senior associate dean for academic affairs in Pitt’s Swanson School.

And it’s what Pitt is instilling in its PhD students in the physical sciences and engineering. Shuman says: “You look at the societal problems we’re facing—energy, the environment, health care, and medicine. These are large, complex problems. The teams that tackle them have to be interdisciplinary because we’re working on problems that are all over the map. We have to find expertise and opportunities at every turn. And for grad students at Pitt, that opportunity can be found throughout the University.”
Pastimes and Exhibitions

Concerts
- **Emerson String Quartet**, featuring works by Haydn, Mozart, and Dvorak, 5 p.m. Nov. 18, Carnegie Library, 7101 Hamilton Ave., Homewood, 2008-09 Mental Health and Wellness Lecture Series, Western Psychiatric Institute and Clinic, register with Mary Fisher at 412-383-2727.

Exhibitions

Trends

Carnegie International through Jan. 11, 7227 Reynolds St., Point Breeze, From www.silvereye.org.

Pittsburgh Public Theater, 412-316-1600, www.ppt.org.

Mamma Mia!
- Nov. 5, O’Reilly Theater, Downtown, Pittsburgh Public Theater, 412-316-1600.

Pitt Repertory Theater, through November 9
- **Fall Flower Show**, Noon to 5 p.m. Nov. 5, 3703 Pixerstick Hall, Free lunch, noon Nov. 5, Concord Hall, Alumni Hall, Provost’s Advisory Council and Center for Instructional Development and Distance Learning, 412-583-8792, www.cidc.pitt.edu.
- **Teaching Excellence Fair, showcases grant award winners from 2007-08 9 a.m.-3 p.m. Nov. 7, Conodus Ballroom, Alumni Hall, Provost’s Advisory Council and Center for Instructional Development and Distance Learning, 412-583-6556, www.aluxx.pitt.edu/openhouse.
- **Teaching Workshop, Survival Skills and Ethics Workshop, 10 a.m.-3 p.m. Nov. 8, Lecture Room 2, 4th Floor, Scale Hall, Pitt’s School of Languages and Literatures, register at www.survival.pitt.edu or call 412-578-3716.
- **Hee-Sun Kim and K’Arts Korean Music Ensemble, traditional and contemporary Korean music and dance, free, 8 p.m. Nov. 9, Lower Level, University of Pittsburgh, Pittsburgh Public Theater, Department of Music, 412-624-4125, www.music.pitt.edu.

Opera/ Theater/ Dance
- **Mambo Mia!** musical, through Nov. 9, Benedum Center, 719 Liberty Ave., Downtown, PNC Broadway Across America, 412-316-1600, www.broadwayacrossamerica.com.

Dissertations
- **Soshena Daspazia**, Graduate School of Public Health, “Association Between Gastrointestinal Parasitism With Serum Parasomnina Activity and Systemic Lupus Erythematosus,” 10 a.m. Nov. 8, 428A Parran Hall.

Courses

Miscellaneous
- **Ben Lonergan, School of Arts and Sciences’ Department of Philosophy, “Ideal Theory as Democratic Theory,” noon Nov. 5, 1001D Cathedral of Learning.
- **Tea Soup**, Graduate School of Public Health’s Department of Biostatistics, Development and Comparison of Different Methods of Evaluating False-Response Roe Systems,” 11 a.m. Nov. 4, 32A Parman Hall.

Events

Teaching
- **“How to Cope With Stress for Better Performance,”** Bruce S. Rabin, Pitt professor of pathology and psychology, 1:30 p.m. Nov. 5, Carnegie Library, 7101 Hamilton Ave., Homewood, 2008-09 Mental Health and Wellness Lecture Series, Western Psychiatric Institute and Clinic, register with Mary Fisher at 412-383-2727.
- **“International Women Rights Narratives and Women’s Health,”** David Burnard, Pitt professor of medicine, noon Nov. 6, Room 203 Fine Arts Building, Pitt’s Center for Bioethics and Health Policy, Grind Round Fall 2008, 412-647-5700, www.pitt.edu/~bioethic.
- **“Legitimacy and Ethics Workshop,”** 10 a.m.-3 p.m. Nov. 6, Connodus Ballroom, University of Pittsburgh School of Medicine, 412-383-6556, www.aluxx.pitt.edu/openhouse.
- **“Teaching Effective Essays,”** showcases grant award winners from 2007-08 9 a.m.-3 p.m. Nov. 7, Conodus Ballroom, Alumni Hall, Provost’s Advisory Council and Center for Instructional Development and Distance Learning, 412-583-8792, www.cidc.pitt.edu.

Exhibitions
- **“1015 E. Carson St., Pittsburgh, Pittsburgh Public Theater, 412-624-1052, www.pitt.edu/~philist.**
Free at Last? Slavery Exhibition Reception

1. Pitt Chancellor Mark A. Nordenberg (left) and author Marcus Rediker, Pitt professor and chair of the Department of History; 2. High school student Amani Davis viewing a wax figure of Henry Highland Garnet, who escaped in 1839 with nine of his siblings from Maryland to Pennsylvania; 3. Robert Hill, Pitt vice chancellor for public affairs and executive-in-charge of the exhibition; and 4. Valerie McDonald Roberts, who discovered the original documents that prompted the exhibition, in video during the program.

Left: During the reception, three Pitt professors signed copies of slavery-related books they wrote or edited. Marcus Rediker (foreground), Pitt professor and chair of the Department of History; Laurence A. Glasco (middle), a professor of History and History director of the exhibition; and Seymour Drescher, University Professor of History and Sociology.

PHOTOS ©BY ELLIOTT CRAMER/DENMARSH PHOTOGRAPHY