University of Pittsburgh planet hunters based at the Allegheny Observatory were one of nine teams around the world that tracked a planet 190 light-years from Earth making its rare 12-hour passage in front of its star. The project resulted in the first ground-based observation of the entire unusually drawn-out transit and established a practical technique for recording the movement of other exoplanets, or planets outside of Earth's solar system, the teams reported in The Astrophysical Journal.

The Pitt team, led by Melanie Good, a physics and astronomy graduate student in Pitt's School of Arts and Sciences, observed the planet HD 80606b for more than 11 hours on Jan. 10, 2010, as it passed in front of its star, HD 80606, located more than 1.14 quadrillion miles from Earth in the constellation Ursa Major. The Pitt group included Michael Wood-Vasey, a professor of physics and astronomy; Louis Coban of the Allegheny Observatory; and physics and astronomy undergraduates Shane Cerutti, Korena Costello, Maya Hunt, Gary Lander Jr., Eric Roebuck, and Shane Thomas. The Pitt team also included graduate students Shane Cerutti, Korena Costello, Maya Hunt, Gary Lander Jr., Eric Roebuck, and Shane Thomas.

HD 80606b is among the strangest of the 500 exoplanets yet discovered, Good said. Approximately four times the size of Jupiter, the gaseous planet is scorchingly hot, with its star 11 times brighter than the Sun. As a result, the planet has no oceans and its surface temperatures reach 1,000 degrees Fahrenheit. At its farthest, the planet is almost as far from its star as the Earth is from the Sun, while at its closest, it is just 3 percent of that distance, so that the planet’s temperature jumps thousands of degrees as it nears HD 80606. And while most exoplanets complete their transit within a few hours, HD 80606b's transit make it difficult for a single observer to observe all of it, according to the article in The Astrophysical Journal. Coordinated by the Massachusetts Institute of Technology, the Pitt team included graduate student in Pitt's School of Arts and Sciences, observed the planet HD 80606b for more than 11 hours on Jan. 10, 2010, as it passed in front of its star, HD 80606, located more than 1.14 quadrillion miles from Earth in the constellation Ursa Major.

The Pitt team, led by Melanie Good, a physics and astronomy graduate student in Pitt’s School of Arts and Sciences, observed the planet HD 80606b for more than 11 hours on Jan. 10, 2010, as it passed in front of its star, HD 80606, located more than 1.14 quadrillion miles from Earth in the constellation Ursa Major.

The Pitt team, led by Melanie Good, a physics and astronomy graduate student in Pitt’s School of Arts and Sciences, observed the planet HD 80606b for more than 11 hours on Jan. 10, 2010, as it passed in front of its star, HD 80606, located more than 1.14 quadrillion miles from Earth in the constellation Ursa Major.

Continued from page 6

Pitt Researchers Report African American Seniors at Twice the Risk for Mental Abuse, Five Times for Financial Exploitation

By Morgan Kelly

In the first population-based survey to indicate a racial disparity in the psychological abuse of senior citizens, University of Pittsburgh researchers found that African American seniors could be twice as likely to be mistreated than elders of other races. The survey also revealed that African American elders could be up to five times more susceptible to being swindled. Reporting the survey results in The Gerontologist, the researchers urged that health care and social service workers be especially vigilant for the possible mistreatment of African American seniors.

Lead author Scott Beach, assistant director of Pitt’s University Center for Social and Urban Research (UCSUR) and director of the center’s Survey Research Program, said the study is important to the developing field of elder-abuse research. Beach worked with co-authors Richard Schulz, director of UCSUR and the center’s gerontology program; Nicholas Castle, a professor of health policy and management in Pitt’s Graduate School of Public Health; and Jules Rosen, a professor of psychiatry in Pitt’s School of Medicine.

The Pitt survey is among only a few that focus on race as a specific factor in elder mistreatment, Beach said. In addition, the population-based survey collected information directly from senior citizens, through face-to-face and telephone interviews, the most effective way to document unreported abuse, he explained; typically, elder-mistreatment data are gathered from complaints filed with Adult Protective Services. In this way, the Pitt study helps fill a noted gap in elder-mistreatment research: The National Research Council, in its 2003 report, Elder Mistreatment, described existing elder-abuse research as having “a number of weaknesses,” including a lack of clear, consistent definitions and an absence of population-based data.

The team interviewed 903 adults—a statistically large sample—aged 60 and older living in Pennsylvania’s Allegheny County about instances of psychological...
Briefly Noted

Author Mark Kurlansky To Speak at Pitt Oct. 5

Mark Kurlansky, nonfiction author and journalist, will speak about his work at the University of Pittsburgh at 8:30 p.m. Oct. 5 in the Frank Fine Arts Auditorium. Part of the Pittsburgh Contemporary Writers Series, the event is free and open to the public.

Kurlansky is the author of a number of bestselling books, including Salt (Penguin, 2002), Cod (Vintage, 2002), The Eastern Stars (Riverhead Books, 2010), and Fishing for a cure: (Penguin, 2011). Kurlansky’s latest book, The Eastern Stars, is a portrait of a small, impoverished area in the Dominican Republic that has produced 79 major league baseball players. In the book, Kurlansky examines the history, culture, and impact of baseball on this struggling Caribbean town.

A native of Hartford, Conn., Kurlansky received a BA degree in English from the University of Illinois at Chicago. He began his career in New York City working as a playwright and as a playwright-in-residence at Brooklyn College. As a journalist, he has worked as the night editor of the Chicago Tribune and as a playwright-in-residence at Brooklyn College. His articles have appeared in the Los Angeles Times, The New York Times, and Time magazine.

The 2010-11 Pittsburgh Contemporary Writers Series season is sponsored by the University of Pittsburgh Bookstore and the University of Pittsburgh Press. For more information, call 412-624-4508 or visit www.creativewriting.pitt.edu.
Sept. 10 Ceremony Welcomes Returning Pitt Honorees for ODK Walkway Rededication

By Patricia Lomando White

On this walk Omicron Delta Kappa honors those persons who, through intelligent leadership, personal integrity and intellectual honesty, have served their University well.

This inscription at the beginning of a walkway between Pitt’s Cathedral of Learning and the Heinz Chapel welcomes visitors to follow the Omicron Delta Kappa (ODK) walkway and peruse the engraved-in-stone names of those University of Pittsburgh alumni who, during their time at Pitt, earned the honor of ODK Senior of the Year.

Through the decades, some stones had cracked, some had settled, and some of the names had faded, prompting the University of Pittsburgh to restore the walkway. Led by Pitt’s Office of Facilities Management and the Cost Company, which cleaned and restored the Cathedral of Learning several years ago, the walkway restoration was completed last fall.

A dedication and ribbon-cutting ceremony for the newly restored ODK walkway was held Sept. 10, with 27 of Pitt’s 70 living ODK Seniors of the Year present. The walkway commemorates student leadership and celebrates ODK, a prestigious national honorary leadership society. It is the only walkway of its kind in the nation.

“While scholarship has always been a strong requirement for ODK membership, character and achievement in university-life leadership are the primary membership prerequisites,” said Pitt Chancellor Mark A. Nordenberg at the dedication ceremony. “Pitt’s ODK walkway captures the promise of student leadership, which sits at the very heart of the noble work that is done on all five of our campuses each and every day. Our ODK awardees, whose names are memorialized in stone, are linked to Pitt in perpetuity.”

ODK was the first college honor society of national scope to recognize and honor meritorious leadership and service in extracurricular activities and to encourage the development of campus citizenship.

Pitt established the Gamma Circle in 1916 as the third ODK chapter in the nation. The Gamma Circle sponsors Pitt’s Senior of the Year Award, given to students who possess and exhibit outstanding leadership qualities in service to the University. The first ODK Senior of the Year was L.I. Klinestiver, in 1922.

Among Pitt’s 70 ODK awardees is University Trustee Michael A. Bryson, the 1968 ODK winner, who spoke at the dedication. Bryson has served as a Pitt trustee since 2002. A 2008 Pitt Legacy Laureate, Bryson graduated from the University summa cum laude with a BS degree in mathematics and physics. He also was elected to Phi Beta Kappa and received the M.M. Culver Award in Mathematics. He is a past director of Pitt’s Alumni Association.

Among the 26 ODK honorees attending the dedication were a 15-term Republican representative for the 9th Congressional District of Pennsylvania; a regional administrator for the U.S. General Services Administration Mid-Atlantic Region, appointed by President Barack Obama; a director of Business Process Excellence at Ashland, Inc.; a Pitt Rhodes Scholar who is now an assistant professor in the Department of Biological Sciences at Carnegie Mellon University; a national account executive from Kellogg Company in Pittsburgh; a president and CEO of Terradine, LLC, a real estate and research enterprise. (A listing of all the attendees accompanies this article.)

Founded in 1914 at Washington and Lee University in Lexington, Va., ODK is an honorary society that recognizes students who maintain a high standard of leadership in collegiate activities. The founders—15 student and faculty leaders—established the organization with the idea that “leadership of exceptional quality and versatility in college should be recognized, that representatives in all phases of college life should cooperate in worthwhile endeavors, and that outstanding students, faculty, and administrators should meet on a basis of mutual interest, understanding, and helpfulness.”
Science & Technology

Perlmutter-Led Study Finds Common Seizure Drug Might Reverse, Prevent Severe Genetic Liver Disease

By Anita Srikameswaran

The liver scarring of α1-antitrypsin (AT) deficiency, the most common genetic cause for which children undergo liver transplantation, might be reversed or prevented with a medication that has long been used to treat seizures, according to findings from the University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC.

Because the anti-seizure drug is familiar to doctors and has a well-understood safety profile, clinical trials could begin immediately to see whether it can help patients with AT deficiency, said senior author David H. Perlmutter, the Vira I. Heinz Professor and Chair of the Department of Pediatrics, Pitt School of Medicine, and physician-in-chief and scientific director of Children’s Hospital.

In the classic form of the disease, which affects one in 3,000 live births, a gene mutation leads to an abnormal protein, dubbed ATZ, which, unlike its normal counterpart, is prone to aggregation.

“There are aggregates of ATZ accumulate in the liver cells and eventually lead to scarring, or fibrosis, of the organ and set the stage for tumor development,” said Perlmutter, who was elected to the Institute of Medicine in 2008. “The disease sometimes doesn’t show itself until adulthood, when the liver starts to fail due to cirrhosis or cancer.”

For the study, he and his colleagues treated an ATZ cell line with carbamazepine, or Tegretol. Although this drug has been used primarily to treat seizure disorders, some recent work has suggested that it could enhance a natural cellular pathway called autophagy, or self-digestion.

The Pitt researchers reasoned that Tegretol might be able to rid the cells of the toxic aggregated ATZ.

They found that carbamazepine, or Tegretol, could induce a marked decrease in ATZ, because the abnormal proteins were degraded more quickly via autophagy. The researchers then did another experiment in a mouse model of ATZ deficiency.

“The amount of ATZ decreased in the livers of the mice treated with carbamazepine,” Perlmutter said. “The most amazing finding was that the drug reversed the fibrosis in the livers of the mice and, after two weeks of treatment, the liver tissue resembled that of a healthy mouse.”

The ability of carbamazepine and drugs like it to “soup up” the cell’s autophagy machinery might have value in other disorders—such as Alzheimer’s disease, Huntington’s disease and Parkinsonism—that are thought to be caused by toxic effects of protein clumping in the brain.

The team included lead author Tunda Hidvegi, a Pitt research assistant professor in the Department of Pediatrics at Children’s Hospital; Simon C. Watkins, a professor in the Pitt School of Medicine’s Department of Cell Biology and Physiology; George Michalopoulos, chair and professor in the School of Medicine’s Department of Pathology; and other researchers from the Pitt School of Medicine.

The study, which appeared in the July 9, 2010, issue of Science, was funded by the National Institutes of Health, Children’s Hospital, and UPMC.

In the classic form of the disease, which affects one in 3,000 live births, a gene mutation leads to an abnormal protein, dubbed ATZ, which, unlike its normal counterpart, is prone to aggregation.

Study Led by Feghali-Bostwick Finds Potential Target for Fibrosis Treatment

By Amy Dugas Rose

Researchers in the University of Pittsburgh School of Medicine have discovered that a molecule that regulates gene expression plays a central role in the development of fibrosis, a condition in which organ-supporting connective tissues become thick, hard, and rigid, restricting normal function. The findings are available in the American Journal of Pathology.

Early Growth Receptor-1 (EGR-1) orchestrates the response to certain growth factors and influences the activity of numerous genes, said Carol Feghali-Bostwick, principal investigator and a professor of medicine and pathology in the University of Pittsburgh School of Medicine.

“Our study shows that abnormally high levels of EGR-1 are associated with the development of fibrosis,” Feghali-Bostwick said. “Therefore, controlling EGR-1 could be a potential therapeutic strategy for disorders such as scleroderma and pulmonary fibrosis.”

Researchers induced fibrosis in animal and human fibroblasts, which are cells that give rise to connective tissue by utilizing a secreted protein called IGFBP-5 (insulin-like growth factor binding protein 5), made by a gene that is overexpressed in fibrotic lung and skin tissues. They found that the experimentally induced fibrosis was associated with abnormally elevated EGR-1 activity. More importantly, when fibrosis was produced in cells and animals lacking EGR-1, the amount of fibrosis was dramatically reduced.

“We also found that compared to healthy individuals, people who have pulmonary fibrosis had higher levels of EGR-1 in samples of their lung tissue and in their fibroblasts,” Feghali-Bostwick said. The findings suggest that targeting EGR-1 provides a potential therapeutic approach for organ fibrosis.

Researchers received funding for the study from the National Institute of Arthritis and Musculoskeletal and Skin Diseases; the National Heart, Lung, and Blood Institute; the American Lung Association; the American Heart Association Pennsylvania/Delaware affiliate; and the Uehara Memorial Foundation.

By Anita Srikameswaran

The liver scarring of α1-antitrypsin (AT) deficiency, the most common genetic cause for which children undergo liver transplantation, might be reversed or prevented with a medication that has long been used to treat seizures, according to findings from the University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC.

Because the anti-seizure drug is familiar to doctors and has a well-understood safety profile, clinical trials could begin immediately to see whether it can help patients with AT deficiency, said senior author David H. Perlmutter, the Vira I. Heinz Professor and Chair of the Department of Pediatrics, Pitt School of Medicine, and physician-in-chief and scientific director of Children’s Hospital.

In the classic form of the disease, which affects one in 3,000 live births, a gene mutation leads to an abnormal protein, dubbed ATZ, which, unlike its normal counterpart, is prone to aggregation.

“There are aggregates of ATZ accumulate in the liver cells and eventually lead to scarring, or fibrosis, of the organ and set the stage for tumor development,” said Perlmutter, who was elected to the Institute of Medicine in 2008. “The disease sometimes doesn’t show itself until adulthood, when the liver starts to fail due to cirrhosis or cancer.”

For the study, he and his colleagues treated an ATZ cell line with carbamazepine, or Tegretol. Although this drug has been used primarily to treat seizure disorders, some recent work has suggested that it could enhance a natural cellular pathway called autophagy, or self-digestion.

The Pitt researchers reasoned that Tegretol might be able to rid the cells of the toxic aggregated ATZ.

They found that carbamazepine, or Tegretol, could induce a marked decrease in ATZ, because the abnormal proteins were degraded more quickly via autophagy. The researchers then did another experiment in a mouse model of ATZ deficiency.

“The amount of ATZ decreased in the livers of the mice treated with carbamazepine,” Perlmutter said. “The most amazing finding was that the drug reversed the fibrosis in the livers of the mice and, after two weeks of treatment, the liver tissue resembled that of a healthy mouse.”

The ability of carbamazepine and drugs like it to “soup up” the cell’s autophagy machinery might have value in other disorders—such as Alzheimer’s disease, Huntington’s disease and Parkinsonism—that are thought to be caused by toxic effects of protein clumping in the brain.

The team included lead author Tunda Hidvegi, a Pitt research assistant professor in the Department of Pediatrics at Children’s Hospital; Simon C. Watkins, a professor in the Pitt School of Medicine’s Department of Cell Biology and Physiology; George Michalopoulos, chair and professor in the School of Medicine’s Department of Pathology; and other researchers from the Pitt School of Medicine.

The study, which appeared in the July 9, 2010, issue of Science, was funded by the National Institutes of Health, Children’s Hospital, and UPMC.

In the classic form of the disease, which affects one in 3,000 live births, a gene mutation leads to an abnormal protein, dubbed ATZ, which, unlike its normal counterpart, is prone to aggregation.

By Amy Dugas Rose

Researchers in the University of Pittsburgh School of Medicine have discovered that a molecule that regulates gene expression plays a central role in the development of fibrosis, a condition in which organ-supporting connective tissues become thick, hard, and rigid, restricting normal function. The findings are available in the American Journal of Pathology.

Early Growth Receptor-1 (EGR-1) orchestrates the response to certain growth factors and influences the activity of numerous genes, said Carol Feghali-Bostwick, principal investigator and a professor of medicine and pathology in the University of Pittsburgh School of Medicine.

“Our study shows that abnormally high levels of EGR-1 are associated with the development of fibrosis,” Feghali-Bostwick said. “Therefore, controlling EGR-1 could be a potential therapeutic strategy for disorders such as scleroderma and pulmonary fibrosis.”

Researchers induced fibrosis in animal and human fibroblasts, which are cells that give rise to connective tissue by utilizing a secreted protein called IGFBP-5 (insulin-like growth factor binding protein 5), made by a gene that is overexpressed in fibrotic lung and skin tissues. They found that the experimentally induced fibrosis was associated with abnormally elevated EGR-1 activity. More importantly, when fibrosis was produced in cells and animals lacking EGR-1, the amount of fibrosis was dramatically reduced.

“We also found that compared to healthy individuals, people who have pulmonary fibrosis had higher levels of EGR-1 in samples of their lung tissue and in their fibroblasts,” Feghali-Bostwick said. The findings suggest that targeting EGR-1 provides a potential therapeutic approach for organ fibrosis.

Researchers received funding for the study from the National Institute of Arthritis and Musculoskeletal and Skin Diseases; the National Heart, Lung, and Blood Institute; the American Lung Association; the American Heart Association Pennsylvania/Delaware affiliate; and the Uehara Memorial Foundation.
Reduced Activity in Key Brain Areas Seen in Women With Postpartum Depression, Pitt Study Finds

By Megan Grote Quatrini

Certain brain areas of women with postpartum depression react less to images of scared or angry faces than those of women who are well, according to a study by University of Pittsburgh School of Medicine researchers that was published in a recent issue of the American Journal of Psychiatry. The researchers also found a reduction in brain activity that was associated with greater impairment of maternal attachment processes.

“The birth of a child is not only an event, but it is paradoxically accompanied by maternal depression in 15 percent of new moms,” said Eydie L. Moses-Kolko, lead author of the study and an assistant professor of psychiatry at Pitt. “With our research, we are hoping to gain greater mechanistic understanding of postpartum depression, namely what is going on in the brains of depressed mothers.”

—Eydie L. Moses-Kolko

and scared faces, and the researchers examined the mothers’ neural reactions to the images. Researchers found that negative emotional faces activated the left dorsalmedial prefrontal cortex, which is a social cognition region of the brain, significantly less in depressed mothers than in healthy mothers. Deficits in this region, therefore, might represent diminished awareness of the emotions of others and less empathy for them. The researchers also found that while negative images were viewed, communication between the left dorsomedial prefrontal cortex and the left amygdala was present in healthy moms but not in depressed ones, suggesting that this might be an important neural circuit that regulates emotional responses to unpleasant stimuli, such as a crying baby.

“We also discovered that greater infant-related hostility and more severe depression were associated with reduced face-related amygdala activity, which may be a mechanism for the reduced attunement and empathic responses in some depressed moms that is described in the literature,” noted Moses-Kolko. “We need studies whereby brain responses can be directly related to live mother-infant behavior in order to definitively clarify brain mechanisms of mother-infant attachment. Ultimately, this information has the potential to guide the development of more effective treatments for postpartum depression.”

The study was supported in part by funding from the National Institute of Mental Health and the National Alliance for Research on Schizophrenia and Depression.

Blocking DNA Repair Protein Could Lead to Targeted, Safer Cancer Therapy, Pitt, UPCI Find

Researchers in Pitt’s School of Medicine and the University of Pittsburgh Cancer Institute (UPCI) have discovered that inhibiting a key molecule in a DNA repair pathway could provide the means to make cancer cells more sensitive to radiation therapy while protecting healthy cells. The findings are published in Science Signaling and provide new insights into mechanisms of how the body fixes environmentally induced DNA damage and into the deadly neurological disease ataxia-telangiectasia (A-T), said senior author Christopher Bakkenist, assistant professor of radiation oncology, pharmacology, and chemical biology at Pitt and UPCI.

“A characteristic symptom of A-T is heightened sensitivity to ionizing radiation, such as X-rays and gamma rays,” Bakkenist said. “If we understand why that happens, then we might be able to reproduce it to make tumor cells vulnerable to radiation treatments while sparing healthy cells, which would make therapy more effective while minimizing side effects.”

In A-T, brain areas that control movement progressively degenerate, causing walking and balance problems. Patients carry a gene mutation that stops production of a protein called ATM kinase, which spurs other proteins involved in normal cell division, DNA repair, and cell death.

Radiation causes DNA mutations during the process of cell division, when genetic material is copied for a new cell to form. The cell has repair pathways that include checkpoints to look for errors as well as methods to repair them, but if enough mutations accumulate, the cell could become cancerous or self-destruct. A-T patients, who lack the kinase, have a higher risk for developing cancer, Bakkenist said.

“ATM kinase remains present in the vast majority of human cancers, so that suggests it is needed by those diseased cells during replication,” Bakkenist said. “But ATM kinase remains present in the vast majority of human cancers, so that suggests it is needed by those diseased cells during replication.”

Cells that, unlike cancer cells, are not going through what’s known as replication stress, would not be affected by an ATM inhibitor and, like A-T cells, likely have another way of repairing certain radiation-induced mutations, Bakkenist said, “so that would make cancer cells particularly vulnerable to an ATM inhibitor, while healthy cells should be unaffected.”

Bakkenist and his team are now studying the effects of such inhibitors on pancreatic, lung, and breast cancer cells.

The work was supported by a National Cancer Institute Lung Cancer SPORE grant; the Lung Cancer Research Foundation; the Breast Cancer Research Foundation; and the Frieda G. and Saul F. Shapira BRCA Cancer Research Program.
A group of Pitt dignitaries, faculty, and librarians and other staff members gathered at Hillman Library Sept. 27 for a demonstration of Pitt’s new Espresso Book Machine (EBM), which can print, glue, and bind a paperback book in a matter of minutes. The first book “hot off the press” was an updated version of Where the Evidence Leads (University of Pittsburgh Press, 2003) by former Pennsylvania Governor, former U.S. Attorney General, and Pitt alumnus and trustee Dick Thornburgh (LAW ’57).

The massive EBM database, called EspressoNet, includes nearly a million book titles, including textbooks, thousands of titles in the ULS D-Scribe online collections, and most University of Pittsburgh Press titles. The machine soon will be housed in the University Book Center, and its ability to print books on demand is expected to reduce the cost of select student textbooks. Pitt is one of only 30 universities worldwide to have an EBM.

Photos: 1. From left, University Library System (ULS) Director Rush Miller, Pitt Chancellor Mark A. Nordenberg, and Thornburgh inspect Thornburgh’s book, Where the Evidence Leads, which was printed in about seven minutes from a digital file. 2. Patricia Duff, head of ULS’s Department of Document Delivery and Interlibrary Loans, explains the EBM’s internal workings to Thornburgh. 3. Thornburgh displays the final product after his autobiography emerges from the machine.
Concerts

Rakugo, Japanese sideshow comedy performance, 6 p.m. Oct. 5, 5th Floor A, Carnegie Library of Pittsburgh, 4400 Forbes Ave., Oakland, 412-622-3351, newmedia@carnegielibrary.org

Jay Iko, singer/songwriter, 2 p.m. Oct. 16, Quiet Reading Room, First Floor, Carnegie Library of Pittsburgh, 4400 Forbes Ave., Oakland, 412-622-3315, newmedia@carnegielibrary.org.

Pitt PhD Dissertation Defenses

Jennifer Whately Schwartz, School of Arts and Sciences’ Department of English, 8:30 a.m. Oct. 6, “Writing with Readers: Written Comments and the Teaching of Composition,” 526 Cathedral of Learning

Kori N. Hajak-Bouwen, School of Medicine’s Cellular and Molecular Pathology Graduate Program, 10 a.m. Oct. 6, “Beta-Catenin in Liver: A Matter of Life and Death,” 510S Scifir Conference Center, Scaife Hall.

Angela Green, School of Medicine’s Molecular Virology and Immunology Graduate Program, 10 a.m. Oct. 7, “Effective and Regulatory CD4 T Cells During Mycobacterium Tuberculosis Infection,” 1105A Scifir Conference Center, Scaife Hall.

Miscellaneous

Opera/Theater/Dance

Exhibitions

Heinz Chapel Choir Fall Concert, Heinz Memorial Chapel, October 10

“What to Say About Natural Kinds,” P.D. Magnus, visiting fellow, Pitt Center for Philosophy of Science, 12:30 p.m. Oct. 8, 817R Cathedral of Learning, Pitt Center for Philosophy of Science, 412-624-1052, pitcest@pitt.edu.

Between Women, a discussion of the book by Sharon Marcus, Orlando Har rirman Professor of English, Columbia University, 12:30 p.m. Oct. 8, 526 Cathedral of Learning, Pitt’s Humanities Center Colloquium Series, humctr@pitt.edu, www.humcenter.pitt.edu.

Lectures/Seminars/Readings

Towards a New Epistemology of Science,” Samuel Schneider, visiting fellow, Pitt Center for Philosophy of Science, 12:05 p.m. Oct. 5, 817R Cathedral of Learning, Pitt Center for Philosophy of Science, 412-624-1052, pitcest@pitt.edu.

Mark Kurlansky, 2010 Fred R. Brown Literary Award winner, 8:30 p.m. Oct. 5, Frick Fine Arts Auditorium, Pittsburgh Contemporary Writers Series, Pitt Department of English, oaks@pitt.edu, www/english.pitt.edu.

Reproductive Rights in Pennsy lvania, Rebecca Cavanaugh, vice president for public affairs, Planned Parenthood of Western Pennsylvania, noon Oct. 6, 2201 Povar Hall, Pitt Women’s Studies Program, wstudies@pitt.edu.

Young Women Picking Fruits, 1891, Pittsburgher Mary Cassatt, Permanent Collection, Carnegie Museum of Art

August Wilson Center for African American Culture, In His Father’s House, mixed-media exhibition about how African American collect and preserve their culture, on going, 980 Liberty Ave., Downtown, Pittsburgh Cultural Trust, 412-456-4666, www.pgharts.org.
Sharing Skills and Hope During Pitt’s 19th Annual United Way Day of Caring

About 350 University of Pittsburgh administrators, faculty, and staff donned blue jeans and work shirts as they traveled to sites in Oakland and beyond to work on 14 different service projects during Pitt’s 19th United Way Day of Caring on Sept. 29.

The University partnered on the projects with TIAA-CREF, a retirement planning and investment manager for University faculty and staff.

There was more than enough work to go around, with digging and painting skills being in high demand. Among the service projects were interior painting at the Hazelwood YMCA and Lawrenceville’s Stephen Foster Community Center. Volunteers also worked with Hill House Neighborhood Development to plant trees and other greenery in lots adjacent to Cliffside Park, which is a playground on Cliff Street in the Hill District. Crews working at the Greater Pittsburgh Community Food Bank in Duquesne sorted and packed bulk foods for distribution to needy families throughout the region.

The Oakland Food Pantry, meanwhile, received help with interior improvements. Stephen Zupcic, Pitt’s assistant director for community relations, said the Oakland pantry, located on Lawn Street in South Oakland, serves 500 families a week.