Luxbacher and Richards Advanced as New Trustee Candidates by Pitt Board’s Nominating Panel

By John Harvith

The Nominating Committee of the University of Pittsburgh Board of Trustees has recommended for membership on the board Pitt alumnus Roberta A. Luxbacher (ENG ’78), vice president, Global Industrial and Wholesale, ExxonMobil Fuels Marketing Company of ExxonMobil Corporation, and Pitt alumnus Thomas E. Richards (A&S ’76), president, chief operating officer, and executive committee member of CDW LLC.

The full board will act on the committee’s recommendations at its June 24 annual meeting. Biographical information on the nominees follows.

In her current position for ExxonMobil, Luxbacher is responsible for global fuel sales, marketing, and operations for industrial, commercial, and wholesale customers in more than three dozen countries. She joined the company in 1985 and earned her BS degree in chemical engineering from Pitt’s Swanson School of Engineering. She progressed through a series of downstream (refining and marketing) analysis, planning, business coordination, and management assignments in Houston, Dallas, and Charlotte. In 1991, she moved to Houston as planning and engineering manager for Exxon Marketing. Distribution and was subsequently named Exxon’s manager for Products & Feedstocks, Supply. In 1995, she moved to Exxon’s upstream (exploration and production) business as the corporation’s manager for its U.S. Natural Gas Marketing division.

Luxbacher was named vice president of U.S. Natural Gas in 1998 and vice president, Americas, ExxonMobil Gas Marketing Company with responsibility for the marketing of ExxonMobil’s natural gas production in North and South America. She served on the Natural Gas Supply Association (NGSA) Board from 2000 to 2009 and was elected as NGSA secretary/treasurer and then chair in 2001-02. She also served on the American Petroleum Institute Upstream Committee and U.S. Natural Gas Council. In April 2002, Luxbacher was appointed director of ExxonMobil International Limited and vice president of Europe Gas and Power Marketing, London, UK, with responsibility for ExxonMobil’s natural gas and natural gas liquids marketing, infrastructure, and joint ventures across Europe.

In April 2007, Luxbacher was named general manager, Corporate Planning, Exxon Mobil Corporation, with responsibility for the development of ExxonMobil’s corporate plan and annual energy outlook. In February 2009, she was named to her current position. She is an advisory council member for the ExxonMobil Women’s Economic Opportunity Initiative and ExxonMobil Math and Science Initiative. She also has served on the board of the National Bureau of Asian Research and is a frequent speaker on ExxonMobil’s Energy Outlook and current energy issues.

As a Pitt undergraduate, Luxbacher was a University Scholar, a member of the American Institute of Chemical Engineers and the Society of Women Engineers, and involved in numerous student activities. An active alumna, she is a member of the Swanson School of Engineering Board of Visitors and an emeritus member of the Board of Governors (A&S). Luxbacher also serves on the board of CDW LLC.

Richards is responsible for sales, advanced technology services, marketing, product and partner management, and e-commerce at CDW, a leading provider of technology products and services to business, government, education, and the healthcare sector. Founded in 1984, CDW is ranked No. 38 on Forbes list of America’s Largest Private Companies, is responsible for sales, advanced technology services, marketing, product and partner management, and e-commerce at CDW, a leading provider of technology products and services to business, government, education, and the healthcare sector. Founded in 1984, CDW is ranked No. 38 on Forbes' list of America’s Largest Private Companies, was No. 19 on Forbes’ list of America’s Largest Private Companies, and was recognized by the Swanson School of Engineering and the Pitt Alumni Association with its 2011 Distinguished Alumni Award.

In his current position, Richards is responsible for sales, advanced technology services, marketing, product and partner management, and e-commerce at CDW, a leading provider of technology products and services to business, government, education, and the healthcare sector. Founded in 1984, CDW is ranked No. 38 on Forbes’ list of America’s Largest Private Companies, was No. 19 on Forbes’ list of America’s Largest Private Companies, and was recognized by the Swanson School of Engineering and the Pitt Alumni Association with its 2011 Distinguished Alumni Award.

Burke Named Distinguished University Professor, And Billiar, Gronenborn, Klunk, and Strick Named Distinguished Professors

The University of Pittsburgh is honoring five faculty members this month by naming them to a Distinguished University Professor and four Distinguished University Professorships. The honor recipients and their new titles are: Donald Burke, Distinguished University Professor of Health Sciences Policy; Timothy R. Billiar, Distinguished Professor of Surgery; Angela Gronenborn, Distinguished Professor of Structural Biology; William E. Klunk, Distinguished Professor of Psychiatry; and Peter Strick, Distinguished Professor of Psychological and Brain Sciences.

A Distinguished University Professorship recognizes eminence in several fields of study, transcending and illuminating all combinations of single discipline; the rank of Distinguished Professor recognizes extraordinary, internationally recognized scholarship attainment in an individual discipline or field. Pitt Chancellor Mark A. Nordenberg made the appointments—which become effective July 1—based on the recommendations of Pitt Provost and Senior Vice Chancellor for Development Patricia E. Beeson.

Brief biographies of the honor recipients follow.

Donald Burke is the inaugural University of Pittsburgh Medical Center—Jonas Salk Professor of Global Health and the dean of the Graduate School of Public Health (GSPH). He is one of the world’s foremost experts on the prevention, diagnosis, and control of infectious diseases of global concern, including HIV/AIDS, Hepatitis A, avian influenza, and

Burke Named Distinguished University Professor, And Billiar, Gronenborn, Klunk, and Strick Named Distinguished Professors

The University of Pittsburgh is honoring five faculty members this month by naming them to a Distinguished University Professor and four Distinguished University Professorships. The honor recipients and their new titles are: Donald Burke, Distinguished University Professor of Health Sciences Policy; Timothy R. Billiar, Distinguished Professor of Surgery; Angela Gronenborn, Distinguished Professor of Structural Biology; William E. Klunk, Distinguished Professor of Psychiatry; and Peter Strick, Distinguished Professor of Psychological and Brain Sciences.

A Distinguished University Professorship recognizes eminence in several fields of study, transcending and illuminating all combinations of single discipline; the rank of Distinguished Professor recognizes extraordinary, internationally recognized scholarship attainment in an individual discipline or field. Pitt Chancellor Mark A. Nordenberg made the appointments—which become effective July 1—based on the recommendations of Pitt Provost and Senior Vice Chancellor for Development Patricia E. Beeson.

Brief biographies of the honor recipients follow.

Donald Burke is the inaugural University of Pittsburgh Medical Center—Jonas Salk Professor of Global Health and the dean of the Graduate School of Public Health (GSPH). He is one of the world’s foremost experts on the prevention, diagnosis, and control of infectious diseases of global concern, including HIV/AIDS, Hepatitis A, avian influenza, and

Sarah Geisler Named Pickering Foreign Affairs Fellow

The Woodrow Wilson National Fellowship Foundation has named University of Pittsburgh Honors College student Sarah Geisler a 2011 Thomas R. Pickering Undergraduate Foreign Affairs Fellow. Geisler, who just completed her junior year at Pitt, is one of 20 new undergraduate Pickering Fellows nationwide and the only one from a Pennsylvania institution of higher education.

Administrated by the Woodrow Wilson Foundation and funded by the U.S. Department of State, the award provides financial support of up to $40,000 for each fellow’s senior year of undergraduate study and up to $40,000 for the first year of master’s degree study as the fellow prepares academically and professionally to serve in the United States Foreign Service.

A native of Pittsburgh and a middle child of two Pitt undergraduates, Geisler carries an unabashed love of all things Pitt. She is an avid fan of the Pitt Panthers and the Pittsburgh Penguins; she also volunteers at local YWCA and New Life tutoring programs. She is a frequent speaker on foreign policy and is working toward a certificate in global studies. She has focused on community development, working as a study-abroad student in Nicosia, Cyprus, at a peace-building camp for Greek and Turkish children and with inner-city youth through various mentoring and tutoring programs.

Geisler is also an intern with the挺 though various mentoring and tutoring programs. She also has studied in Istanbul and will start formal study of Turkish next year. This summer, she is doing research at Pitt on the relationship between divided cities, memories, and literature. She plans to concentrate on international development and conflict resolution in graduate school. Pickering Fellows participate in one domestic and one overseas internship and commit to three years of service as a Foreign Service Officer for the U.S. Department of State, contingent on their passing the Foreign Service examinations. Geisler is the third Pitt student to be named an under-
ULS Director Rush G. Miller Honored with CALA Distinguished Service Award

By Sharon S. Blake

The Chinese American Librarians Association (CALA) has named Rush G. Miller, director of Pitt’s University Library System (ULS) and Hillman University Librarian, the recipient of the 2011 CALA Distinguished Service Award, the association’s highest recognition.

Miller, a longtime advocate of programs that reach out to Chinese libraries and librarians, is being recognized for his leadership, vision, and achievements in librarianship at the national and international levels. He developed the ULS-China Librarians Training and Exchange Program, which allows Chinese librarians to spend six months to a year at Pitt to visit and learn from libraries in the United States; ULS librarians do the same in China. To date, the program has benefited 41 Chinese and 14 Pitt librarians.

Miller also implemented the East Asian Gateway Service (EAGS), a groundbreaking service that provides document delivery between key academic libraries in East Asia and scholars in the West. EAGS has expanded to 17 academic libraries in mainland China, Hong Kong, Macau, and Taiwan and one research library in Korea. Western users are from 40 U.S. states and from other nations worldwide.

When a massive earthquake shook China in May 2008, Miller took a special interest in the affected region’s libraries. He spearheaded a book drive for materials in English for students in grades 7 through 12. In September 2008, he and a delegation personally took 1,700 volumes to schools and universities impacted by the disaster.

Under Miller’s leadership, the ULS is continuously strengthening its own East Asian Library, one of the most prominent collections of its kind in North America. In 2004, Miller helped organize a three-week summer institute at Hillman Library called East Asian Librarianship: China Focus, which included training for 28 Chinese studies librarians from throughout the United States.

When a massive earthquake shook China in May 2008, Miller took a special interest in the affected region’s libraries. He spearheaded a book drive for materials in English for students in grades 7 through 12. In September 2008, he and a delegation personally took 1,700 volumes to schools and universities impacted by the disaster.

Miller, who spoke at the 2010 CALA Annual Program during the American Library Association (ALA) Annual Conference, has published articles and delivered presentations on many issues facing today’s librarians. He coauthored Beyond Survival: Managing Academic Libraries in Transition (Libraries Unlimited, 2007), which provided examples of how changes have been managed at specific libraries.

A nonprofit organization affiliated with the ALA, CALA was founded in 1973 and is a member of the Council of National Library and Information Associations. Its objectives include the promotion of Sino-American librarianship and library services, fostering the cooperation of Chinese American librarians with other associations and organizations, and the enhancement of communication among Chinese American librarians and between Chinese American librarians and other librarians. It has chapters throughout the United States and in Canada, China, Hong Kong, Taiwan, and Singapore.

Chancellor’s Affirmative Action Award

Chancellor Mark A. Nordenberg awarded his 2011 Affirmative Action Award to Alaine M. Allen, director of the Pitt Engineering Career Access Program (PECAP) in the Swanson School of Engineering. The award is presented annually to an outstanding University program area or individual that has made a significant contribution in affirmative action. The chancellor presented the $2,500 award to Allen during the June 15 University Senate Council meeting. In his June 10 letter to Allen informing her of the award, Nordenberg said the selection committee "judged you as an ideal administrator whose experience with the range of services provided by the School of Engineering and the University brings the continuity of commitment and vision necessary to maintain both the reach and the depth of PECAP’s affirmative action mission.” Nordenberg also noted that he was “particularly impressed” that Allen’s nomination was supported by two former PECAP participants. From left, Carol Muhammad, director of Pitt’s Office of Affirmative Action, Diversity, and Inclusion, who served as chair of the award selection committee; Chancellor Nordenberg; Allen; and Patricia Weiss, vice president of the University Senate and reference and information technology librarian for Pitt’s Health Sciences Library System.

Pitt Publishes, Seeks Contributions To Contemporaneity, a New E-Journal on Visual Culture

By Sharon S. Blake

Academic manuscripts and essays on visual culture are being solicited for Contemporaneity: Historical Presence in Visual Culture—a new e-journal published by the University of Pittsburgh’s University Library System (ULS), a national leader in Open Access digital publishing.

Contemporaneity: Historical Presence in Visual Culture will publish work that grapples with the question of how cultures throughout history use images to record, define, and confront temporal experiences.

The new journal has as its mission rethinking the relationship between visual culture and time.

The new journal has as its mission rethinking the relationship between visual culture and time.

The new journal has as its mission rethinking the relationship between visual culture and time.

The new journal has as its mission rethinking the relationship between visual culture and time.

The new journal has as its mission rethinking the relationship between visual culture and time.
Small genetic mutations that add up over time could create an evolutionary express lane that leads to the rapid development of new traits, researchers from the University of Pittsburgh and the University of Wisconsin at Madison have found.

The team reports in the Proceedings of the National Academy of Sciences (PNAS) that slight changes in segments of DNA known as transcriptional enhancers—which determine the when, where, and how much in gene production—can activate dormant genetic imperfections. These alterations awaken specific genes to low-level activity, or “leakiness,” in developing tissue different from the genes’ typical location. Just a few subsequent mutations build on that stirring to result in a new function for an old gene—and possibly a novel trait.

Coauthor Mark Rebeiz, a professor of biological sciences in Pitt’s School of Arts and Sciences, and his colleagues traced how a certain unwrapping gene found itself in the unique optical neurons of a species of fruit fly. They found that tiny alterations in the transcriptional enhancers of the species’ ancestor caused the gene to take root in these neurons for the first time. A couple of mutations later and the gene became a permanent fixture in the fly’s brain cells.

By Morgan Kelly

“Leaky” Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

Pitt and UW-Madison Researchers Find

“Leaky” Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

Pitt and UW-Madison Researchers Find

“Leaky” Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

Small genetic mutations that add up over time could create an evolutionary express lane that leads to the rapid development of new traits, researchers from the University of Pittsburgh and the University of Wisconsin at Madison have found.

The team reports in the Proceedings of the National Academy of Sciences (PNAS) that slight changes in segments of DNA known as transcriptional enhancers—which determine the when, where, and how much in gene production—can activate dormant genetic imperfections. These alterations awaken specific genes to low-level activity, or “leakiness,” in developing tissue different from the genes’ typical location. Just a few subsequent mutations build on that stirring to result in a new function for an old gene—and possibly a novel trait.

Coauthor Mark Rebeiz, a professor of biological sciences in Pitt’s School of Arts and Sciences, and his colleagues traced how a certain unwrapping gene found itself in the unique optical neurons of a species of fruit fly. They found that tiny alterations in the transcriptional enhancers of the species’ ancestor caused the gene to take root in these neurons for the first time. A couple of mutations later and the gene became a permanent fixture in the fly’s brain cells.

By Morgan Kelly

“Leaky” Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

Pitt and UW-Madison Researchers Find

“Leaky” Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

Small genetic mutations that add up over time could create an evolutionary express lane that leads to the rapid development of new traits, researchers from the University of Pittsburgh and the University of Wisconsin at Madison have found.

The team reports in the Proceedings of the National Academy of Sciences (PNAS) that slight changes in segments of DNA known as transcriptional enhancers—which determine the when, where, and how much in gene production—can activate dormant genetic imperfections. These alterations awaken specific genes to low-level activity, or “leakiness,” in developing tissue different from the genes’ typical location. Just a few subsequent mutations build on that stirring to result in a new function for an old gene—and possibly a novel trait.

Coauthor Mark Rebeiz, a professor of biological sciences in Pitt’s School of Arts and Sciences, and his colleagues traced how a certain unwrapping gene found itself in the unique optical neurons of a species of fruit fly. They found that tiny alterations in the transcriptional enhancers of the species’ ancestor caused the gene to take root in these neurons for the first time. A couple of mutations later and the gene became a permanent fixture in the fly’s brain cells.

By Morgan Kelly

“Leaky” Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

Pitt and UW-Madison Researchers Find

“Leaky” Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

Small genetic mutations that add up over time could create an evolutionary express lane that leads to the rapid development of new traits, researchers from the University of Pittsburgh and the University of Wisconsin at Madison have found.

The team reports in the Proceedings of the National Academy of Sciences (PNAS) that slight changes in segments of DNA known as transcriptional enhancers—which determine the when, where, and how much in gene production—can activate dormant genetic imperfections. These alterations awaken specific genes to low-level activity, or “leakiness,” in developing tissue different from the genes’ typical location. Just a few subsequent mutations build on that stirring to result in a new function for an old gene—and possibly a novel trait.

Coauthor Mark Rebeiz, a professor of biological sciences in Pitt’s School of Arts and Sciences, and his colleagues traced how a certain unwrapping gene found itself in the unique optical neurons of a species of fruit fly. They found that tiny alterations in the transcriptional enhancers of the species’ ancestor caused the gene to take root in these neurons for the first time. A couple of mutations later and the gene became a permanent fixture in the fly’s brain cells.

By Morgan Kelly

“Leaky” Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

Pitt and UW-Madison Researchers Find

“Leaky” Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

Small genetic mutations that add up over time could create an evolutionary express lane that leads to the rapid development of new traits, researchers from the University of Pittsburgh and the University of Wisconsin at Madison have found.

The team reports in the Proceedings of the National Academy of Sciences (PNAS) that slight changes in segments of DNA known as transcriptional enhancers—which determine the when, where, and how much in gene production—can activate dormant genetic imperfections. These alterations awaken specific genes to low-level activity, or “leakiness,” in developing tissue different from the genes’ typical location. Just a few subsequent mutations build on that stirring to result in a new function for an old gene—and possibly a novel trait.

Coauthor Mark Rebeiz, a professor of biological sciences in Pitt’s School of Arts and Sciences, and his colleagues traced how a certain unwrapping gene found itself in the unique optical neurons of a species of fruit fly. They found that tiny alterations in the transcriptional enhancers of the species’ ancestor caused the gene to take root in these neurons for the first time. A couple of mutations later and the gene became a permanent fixture in the fly’s brain cells.
emerging infectious diseases. In 1999, while he was heading a named professorship and serving as dean of GSHP, Burke was director of the University of Pittsburgh Center for Vaccine Research and served as Pitt’s chief academic officer. By 2001, he had added the position of associate vice chancellor for global health, health sciences. In 2009, he was elected to the Institute of Medicine of the National Academies, one of the highest honors in health and medicine.

Before joining the University of Pittsburgh, Burke was a professor in the Johns Hopkins Bloomberg School of Public Health, where he served as associate chair of the Department of International Health and director of the Center for International Health and Development. He also was principal investigator of National Institutes of Health–supported research projects on HIV vaccines, biodefense and emerging infectious diseases.

Prior to his tenure at Hopkins, Burke served 23 years on active duty in the U.S. Army, leading military infectious disease research at the Walter Reed Army Institute of Research in Washington, D.C., and at the Armed Forces Research Institute of Medical Sciences in Bangkok, Thailand. He retired at the rank of colonel.

Burke’s career-long mission has been prevention and mitigation of the impact of epidemic infectious diseases of global importance. His research activities have spanned a wide range of science—from the bench to the bush,” including development of new diagnostic and population-based field studies, clinical vaccine trials, computational modeling of epidemic control strategies, and policy analysis. He has authored or coauthored more than 200 papers. In 1971 Burke earned his MD from Harvard Medical School and his BA degree from Western Reserve University (now Case Western Reserve University). In 2007 Burke earned his MD from Harvard Medical School and his BA degree from Western Reserve University (now Case Western Reserve University), where he was elected to the Institute of Medicine of the National Academies, one of the highest honors in health and medicine.

Before joining the University of Pittsburgh, Burke was a professor in the Johns Hopkins Bloomberg School of Public Health, where he served as associate chair of the Department of International Health and director of the Center for International Health and Development. He also was principal investigator of National Institutes of Health–supported research projects on HIV vaccines, biodefense and emerging infectious diseases.

Prior to his tenure at Hopkins, Burke served 23 years on active duty in the U.S. Army, leading military infectious disease research at the Walter Reed Army Institute of Research in Washington, D.C., and at the Armed Forces Research Institute of Medical Sciences in Bangkok, Thailand. He retired at the rank of colonel.

Burke’s career-long mission has been prevention and mitigation of the impact of epidemic infectious diseases of global importance. His research activities have spanned a wide range of science—from the bench to the bush,” including development of new diagnostic and population-based field studies, clinical vaccine trials, computational modeling of epidemic control strategies, and policy analysis. He has authored or coauthored more than 200 papers. In 1971 Burke earned his MD from Harvard Medical School and his BA degree from Western Reserve University (now Case Western Reserve University). In 2007 Burke earned his MD from Harvard Medical School and his BA degree from Western Reserve University (now Case Western Reserve University), where he was elected to the Institute of Medicine of the National Academies, one of the highest honors in health and medicine.
Radio-frequency technology developed at the University of Pittsburgh that uses human tissue instead of air as a conduit for radio waves is the basis of the first electronic “tag” system designed to track and monitor orthopaedic implants. The noninvasive system, known as Ortho-Tag, features a wireless chip attached to the implant and a handheld receiver that together would let physicians view the critical information about the surrounding tissue—that currently can be difficult to track down.

The chip, or tag, would have information about the patient, the implant, and the procedure uploaded to it prior to an operation, explained New Jersey-based orthopaedic surgeon Lee Berger, CEO of Ortho-Tag, Inc., and inventor of the tagged implant. In addition, sensors within the chip would gauge the pressure on the implant, the chemical balance and temperature of the tissue, and the presence of harmful organisms. All of this information would subsequently be read by a handheld probe developed in the laboratory of Martin Mickle, the Nicholas A. DeCecco professor of electrical and computer engineering in Pitt’s Swanson School of Engineering. When placed against the patient’s skin, the probe communicates with a radio-frequency identification (RFID) tag devised in the Mickle lab by Pitt graduate researcher Xiaoyu Liu that emits a unique wavelength designed to travel through human tissue. Special adapters within the chip would gauge the pressure on the implant, the chemical balance and temperature of the tissue, and the presence of harmful organisms.

Berger recently patented the Ortho-Tag concept to resolve a frequent shortage of information he experienced with patients who had received orthopaedic implants. In many cases, patients knew little about the type of device they had received, the company that manufactured it, or even the surgeon who had performed the procedure. Those details could only be learned through an extensive paper trail, made even more complex when dealing with out-of-state patients.

“Other than written records, the only way to learn about a device once it’s implanted is through an X-ray. But even that does not provide such details as size, model number, or manufacturer, or health information about the patient that is directly related to the implant’s performance,” Berger said.

“Because a patient to provide follow-up care, it’s important to know the exact device a patient has, and there are several different models, shapes, and sizes of devices for use in knees, hips, feet, the spine, and other parts of the skeleton. With Ortho-Tag, a doctor only has to scan a chip to see all that information.”

In addition, said Mickle, defective implants are typically recalled by serial number, crucial information that is typically kept on written records where the original surgery took place. Ortho-Tag could be used to identify a suspect implant quickly and easily.

Ortho-Tag represents the growing potential and role of RFID technology in health care, Berger and Mickle said. A 2009 RAND Corporation (Europe) technical report found that RFID technology offers several advantages to medical care in such areas as wireless data transfer and patient/object identification and as a sensor—the primary functions of Ortho-Tag.

“There are a lot of different devices manufactured by a lot of different companies and implanted at a lot of different hospitals by a lot of different surgeons,” Mickle said.

“Their behavior can be complex and difficult to predict,” Mickle said. “But the brain’s electrical activity can be monitored, and we can learn about the function of the network.”

“Neurons are more connected and interdependent than any other cell in the body,” said Henry Zeringue, associate professor of bioengineering at the University of Pittsburgh. “Just because we know how one neuron reacts to something, a whole network can react not only differently, but sometimes in the complete opposite manner predicted.”

“Neurons are more connected and interdependent than any other cell in the body,” said Henry Zeringue, associate professor of bioengineering at the University of Pittsburgh. “Just because we know how one neuron reacts to something, a whole network can react not only differently, but sometimes in the complete opposite manner predicted.”

Zeringue and his colleagues were able to observe the neurons through the window of memory formation, said lead researcher Henry Zeringue, who until May served as a bioengineering professor at Pitt’s Swanson School of Engineering. Magnetic resonance images have suggested that working memories are formed when the cortex, or outer layer of the brain, launches into extended electrical activity after the initial stimulus. Zeringue explained. But the brain’s complex structure and the diminutive scale of neural networks mean that observing this activity in real time can be nearly impossible, he added.

The Pitt team, however, was able to generate and prolong this excited state in groups of 40 to 60 brain cells harvested from the hippocampus of rats—the part of the brain associated with memory formation. In addition, the researchers produced the networks on glass slides that allowed them to observe the cells’ interplay. The work was conducted by 2011 Pitt graduate Ashwin Vigneshwathan, who most recently reported it in the Royal Society of Chemistry (UK) journal, Lab on a Chip.

“Neurons are more connected and interdependent than any other cell in the body,” said Henry Zeringue, associate professor of bioengineering at the University of Pittsburgh. “Just because we know how one neuron reacts to something, a whole network can react not only differently, but sometimes in the complete opposite manner predicted.”

Zeringue and his colleagues were able to observe the neurons through the window of memory formation, said lead researcher Henry Zeringue, who until May served as a bioengineering professor at Pitt’s Swanson School of Engineering. Magnetic resonance images have suggested that working memories are formed when the cortex, or outer layer of the brain, launches into extended electrical activity after the initial stimulus. Zeringue explained. But the brain’s complex structure and the diminutive scale of neural networks mean that observing this activity in real time can be nearly impossible, he added.

The Pitt team, however, was able to generate and prolong this excited state in groups of 40 to 60 brain cells harvested from the hippocampus of rats—the part of the brain associated with memory formation. In addition, the researchers produced the networks on glass slides that allowed them to observe the cells’ interplay. The work was conducted by 2011 Pitt graduate Ashwin Vigneshwathan, who most recently reported it in the Royal Society of Chemistry (UK) journal, Lab on a Chip.

“Neurons are more connected and interdependent than any other cell in the body,” said Henry Zeringue, associate professor of bioengineering at the University of Pittsburgh. “Just because we know how one neuron reacts to something, a whole network can react not only differently, but sometimes in the complete opposite manner predicted.”

Zeringue and his colleagues were able to observe the neurons through the window of memory formation, said lead researcher Henry Zeringue, who until May served as a bioengineering professor at Pitt’s Swanson School of Engineering. Magnetic resonance images have suggested that working memories are formed when the cortex, or outer layer of the brain, launches into extended electrical activity after the initial stimulus. Zeringue explained. But the brain’s complex structure and the diminutive scale of neural networks mean that observing this activity in real time can be nearly impossible, he added.

The Pitt team, however, was able to generate and prolong this excited state in groups of 40 to 60 brain cells harvested from the hippocampus of rats—the part of the brain associated with memory formation. In addition, the researchers produced the networks on glass slides that allowed them to observe the cells’ interplay. The work was conducted by 2011 Pitt graduate Ashwin Vigneshwathan, who most recently reported it in the Royal Society of Chemistry (UK) journal, Lab on a Chip.
Pitt's African Heritage Nationality Room received a visit from a West African tribe’s Yoruba Royalty of Nigeria’s Owu Kingdom; his wife, Olatubosun Abiodun (A&S ’10G, ’05G); and PhD alumnus Oyebade Dosunmu son (left), Pitt ethnomusicology guest speaker for the iSchool Inclusion Institute (i3) by James “Kip” Currier, program director and assistant professor in Pitt’s School of Information Sciences. Supported by a $700,000 grant from the Andrew W. Mellon Foundation, i3 aims to encourage and prepare undergraduate students from underrepresented groups to enroll in graduate studies in the information sciences. The i3, which has students spend a total of six weeks on Pitt’s campus, has been designed to work with three separate cohorts of undergrads from around the country, starting this year and in 2012, and 2013, respectively. Each cohort is to attend a four-week summer introductory session at Pitt and then conduct a yearlong team project overseen by a faculty mentor. Finally, the students will return to Pitt the following summer for a two-week presentation and workshop with their faculty mentors, representatives from various information sciences schools, and information science professionals. The first group began June 6 and will wrap up June 30. More information on i3 is available on the institute Web site, www.iSchool-inclusion.org.

The Pittsburgh chapter of the NAACP held its 57th annual Human Rights Dinner on May 5 in the Omni William Penn Hotel, Downtown. The evening’s theme was “Transforming Education in Pursuit of a Stronger America”; the keynote speaker was John Jackson (left), president and CEO of the Schott Foundation for Public Education. Also shown are Gayle Moss, NAACP Pittsburgh president, and Pitt vice chancellor for public affairs Robert Hill, who introduced Jackson. Pitt’s Office of the Chancellor was a sponsor of the event.

The New Pittsburgh Courier’s annual FAB 40 reception—which recognizes 40 African Americans under age 40 for contributions to their professions and their communities—was held April 29 in the U.S. Steel Tower, Downtown. Among the honorees were a number of Pitt alumni and faculty. Front row, from left: Alyssa Pinchback (A&S ’09), education program manager for the World Affairs Council of Pittsburgh; Kace Taylor (JAW ’06), an attorney with Pepper Hamilton; Melissa Wade (A&S ’96), creative services producer for KDKA-TV; Alontia Bailey (A&S ’03), branch manager with Citizens Financial Group; and Bethany Miller (JAW ’08), a lawyer with Tucker Arenberg. Back row, from left: Jessica Brooke Ruffin (A&S ’06), community impact director for Amachi Pittsburgh; Nicole Manns, vice president and manager of affirmative action compliance for BNY Mellon; Dondré Shaw (SOC WK ’97G, A&S ’95), Pitt lecturer and an advisor in Pitt’s Department of Africana Studies; and an adjunct professor in Pitt’s School of Social Work; and Yolanda Cowgill-Woodard, Pitt assistant professor of Africana Studies.

The Carnegie Science Center held its annual Carnegie Science Awards ceremony on May 5 at Carnegie Music Hall. The Pitt-related winners of this year’s awards were as follows.

• Advanced Materials Award: Alan Russell, University Distinguished Professor of Surgery, bioengineering, and chemical engineering and director of the McGowan Institute for Regenerative Medicine.
• Catalyst Award: Marc Malandro, associate vice chancellor for technology management and commercialization and director of the Office of Technology Management.
• University Post-Secondary Educator Award: Thad Zaleskiwicz, emeritus professor of physics at Pitt-Greensburg.
• Life Sciences Award: Massimo Trucio, Hillman Professor of Pediatric Immunology and head of the Division of Immunogenetics within the Pitt School of Medicine’s Department of Pediatrics and director of the Children’s Hospital of Pittsburgh of UPMC’s Histocompatibility Center.

Two University of Pittsburgh assistant professors—Jane E. Clougherty in the Graduate School of Public Health’s Department of Environmental and Occupational Health and Fengyan Tang in the School of Social Work—have been awarded Steven D. Manners Faculty Development Awards from Pitt’s University Center for Social and Urban Research (UCSUR).

The annual awards, which recognize promising research and infrastructure projects on campus, honor the memory of Steven Manners, a sociologist who began working at UCSUR in 1974 and served as its assistant director from 1989 until his death in September 2000. Clougherty’s project, “Adapting Geospatial Modeling Methods to Assess Individual-Level Variability in Urban Chronic Stress,” will employ a modeling method aimed at enabling researchers to better assess individuals’ chronic stress and the multitude of factors impacting that stress, including proximity to physical stressors associated with noise or air pollution.

Tang’s project, “Retirement Transition, Volunteer Engagement, and Physical Health,” will assess how older adults transition into retirement, including whether they stop working entirely or engage in part-time employment and volunteering, or any combination thereof. It will also look at which physical health changes are related to which type of retirement transition.

Two University of Pittsburgh assistant professors—Jane E. Clougherty in the Graduate School of Public Health’s Department of Environmental and Occupational Health and Fengyan Tang in the School of Social Work—have been awarded Steven D. Manners Faculty Development Awards from Pitt’s University Center for Social and Urban Research (UCSUR).

The annual awards, which recognize promising research and infrastructure projects on campus, honor the memory of Steven Manners, a sociologist who began working at UCSUR in 1974 and served as its assistant director from 1989 until his death in September 2000. Clougherty’s project, “Adapting Geospatial Modeling Methods to Assess Individual-Level Variability in Urban Chronic Stress,” will employ a modeling method aimed at enabling researchers to better assess individuals’ chronic stress and the multitude of factors impacting that stress, including proximity to physical stressors associated with noise or air pollution.

Tang’s project, “Retirement Transition, Volunteer Engagement, and Physical Health,” will assess how older adults transition into retirement, including whether they stop working entirely or engage in part-time employment and volunteering, or any combination thereof. It will also look at which physical health changes are related to which type of retirement transition.

Two University of Pittsburgh assistant professors—Jane E. Clougherty in the Graduate School of Public Health’s Department of Environmental and Occupational Health and Fengyan Tang in the School of Social Work—have been awarded Steven D. Manners Faculty Development Awards from Pitt’s University Center for Social and Urban Research (UCSUR).

The annual awards, which recognize promising research and infrastructure projects on campus, honor the memory of Steven Manners, a sociologist who began working at UCSUR in 1974 and served as its assistant director from 1989 until his death in September 2000. Clougherty’s project, “Adapting Geospatial Modeling Methods to Assess Individual-Level Variability in Urban Chronic Stress,” will employ a modeling method aimed at enabling researchers to better assess individuals’ chronic stress and the multitude of factors impacting that stress, including proximity to physical stressors associated with noise or air pollution.

Tang’s project, “Retirement Transition, Volunteer Engagement, and Physical Health,” will assess how older adults transition into retirement, including whether they stop working entirely or engage in part-time employment and volunteering, or any combination thereof. It will also look at which physical health changes are related to which type of retirement transition.
Concerts

John Williams and the Music of the Movies, featuring celebrated composer John Williams, 8 p.m. June 24, Heinz Hall, 600 Penn Ave., Downtown, BNY Mellon and WDUQ, 412-255-2493.

Lectures

“The General Surgeon Is Primary Care Provider,” Andrew H. Putnam, Mark M. Ravitch Endowed Chair in Surgery, Pitt School of Medicine, 4:30 p.m. June 30, Provost’s Inaugural Lecture Series, Schleifer Hall Lecture Room 6, www.provost.pitt.edu.

Exhibitions

Heinz History Center

The Frick Art & Historical Center

Pitt PhD Dissertation Defenses

Francis Piko, Graduate School of Public Health, 12-30 p.m. June 21, “Joint Modeling of Censored Longitudinal and Event Time Data,” 109 Parran Hall.

Dennis Bourbeau, Swanson School of Engineering’s Department of Bioengineering, 1:30 p.m. June 23, “Central Root of Dorsal Root Ganglion Microstimulation to Evoke Hindlimb Motor Responses,” A219B Langley Hall.

Ian M. Bellamy, Swanson School of Engineering’s Department of Bioengineering, 2 p.m. June 24, “The Role of Matrix Metalloproteinases in Influencing Stem Cell Behavior and Skeletal Muscle Healing,” 2nd-Floor Main Conference Room, Bridgeside Point II Building, 435 Technology Dr., Hazelwood.

Opera/Theater/Dance

Sandylin Proeseguia, School of Arts and Sciences’ Department of Chemistry, 10 a.m. June 26, “In Vivo Fast Scan Cyclic Voltammety Reveals Distinct Domains of Dopamine Protein Function in the Striatum,” 307 Eberly Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.

Keith F. Moquin, School of Arts and Sciences’ Department of Philosophy, 10 a.m. June 26, “Good and Evil,” 109 Parran Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.

Keith F. Moquin, School of Arts and Sciences’ Department of Philosophy, 10 a.m. June 26, “Good and Evil,” 109 Parran Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.

Keith F. Moquin, School of Arts and Sciences’ Department of Philosophy, 10 a.m. June 26, “Good and Evil,” 109 Parran Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.

Keith F. Moquin, School of Arts and Sciences’ Department of Philosophy, 10 a.m. June 26, “Good and Evil,” 109 Parran Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.

Keith F. Moquin, School of Arts and Sciences’ Department of Philosophy, 10 a.m. June 26, “Good and Evil,” 109 Parran Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.

Keith F. Moquin, School of Arts and Sciences’ Department of Philosophy, 10 a.m. June 26, “Good and Evil,” 109 Parran Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.

Keith F. Moquin, School of Arts and Sciences’ Department of Philosophy, 10 a.m. June 26, “Good and Evil,” 109 Parran Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.

Keith F. Moquin, School of Arts and Sciences’ Department of Philosophy, 10 a.m. June 26, “Good and Evil,” 109 Parran Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.

Keith F. Moquin, School of Arts and Sciences’ Department of Philosophy, 10 a.m. June 26, “Good and Evil,” 109 Parran Hall.

Nicole Edgar, School of Medicine’s Center for Neuroscience Neurobiology Graduate Program, noon June 23, “Beyond Neurons: The Role of the Oligodendrocyte-Specific Gene CNP1 in Major Depressive Disorder;” Learning Research and Development Center, LRDC 2nd-Floor Auditorium.

Courtney LaValle, School of Medicine’s Molecular Pharmacology Graduate Program, 2 p.m. June 24, “Targeting Protein Kinase D by Novel Small Molecule Inhibitors and RNA Interference in Prostate Cancer,” 1195 Swartz Biomedical Science Tower.
 Saving Our Trees
Pitt Print Shop Gets Official Stamp of Approval
From Nonprofit That Safeguards Forests

By Morgan Kelly

From the Pitt print shop’s location in the caverns of the Cathedral of Learning basement, its connection to an idyllic forest is unapparent. But the University’s in-house producer of magazines, conference programs, brochures, business cards, and a range of other goods recently committed to help protect those unseen arboreal expanses by officially joining a supply chain that starts with sustainable forestry.

A five-year certification from the Forest Stewardship Council (FSC) means that much of the University Marketing Communications (UMC)-run print shop’s paper supply and final products fall under the global nonprofit’s exhaustive monitoring of certified tree-dependent industries, from the logging site to the final product, in an effort to safeguard forests. It also means that the University and its customers can finally make Pitt’s role in forest preservation known, said Dan Murphy, purchasing administrator for the print shop.

“The Pitt print shop has used FSC-certified vendors for years,” Murphy said. “But with our own certification, we can now publicly tell the University community that we are trying to be environmentally friendly and use paper from forests that are responsibly managed.”

Of the roughly 140 tons of paper Pitt’s print shop uses each year, approximately 70 percent of it is FSC certified, Murphy said. This means certified timber companies operate in the most sustainable way possible and that certified vendors keep to those standards when purchasing and distributing paper. The FSC upholds certification through tracking numbers and frequent audits of operations.

Although Pitt was plugged into the FSC supply chain before certification, there was no formal acknowledgement of or direction to the print shop’s forest friendliness, Murphy said. (The print shop’s other eco-steps include using soy-based ink—about a ton a year—for most jobs as well as recycling scrap paper and polyester printing plates, Murphy said.)

A push for sustainability initiated by Pitt Chancellor Mark A. Nordenberg prompted Murphy and UMC to undertake the five-month FSC certification process, which carries a $3,600 certification fee (for auditor expenses) and a $1,500 annual fee.

With FSC certification comes an audit every year to make sure the Pitt print shop remains a responsible consumer of paper. A tracking number included with every outgoing order means that print shop customers also can verify via the FSC Web site that Pitt is in good standing with the organization. At the same time, Pitt can keep the same tabs on companies it receives paper from, Murphy explained.

Most important to the print shop’s green-minded clientele is that materials can now be affixed with the FSC certification logo, at the customer’s request—a public acknowledgement only certified companies can provide, Murphy said. Even that small logo is subject to FSC approval of the products that can include it and the type of ink used, he said. At the time of each audit, the print shop has to compile a packet for each project featuring the logo so that the FSC can vouch for the product’s adherence to the organization’s guidelines.

“The process takes less time as we get more experienced with it, but it did seem daunting at first,” Murphy said. “It seemed like a lot of extra work, and in some ways it is, especially at the design and preparation stage, but the payoff for the environment is worth it.”

Pitt’s print shop is finishing its first FSC-logoed product—a Pitt Institute of Politics policy brief on primary care in Pennsylvania.